
Proceedings

2nd Workshop on the Security and
Dependability of Critical Embedded
Real-Time Systems (CERTS) 2017

co-located with the IEEE Real-Time Systems Symposium (RTSS)

Paris, France
Dec 5, 2017

Table of Contents
1. Message from the Chairs

2. Workshop Organizers and Program Committee

3. Technical Papers
(a) Facing the Safety-Security Gap in RTES: the Challenge of Timeliness

Marcus Völp (SnT - University of Luxembourg), David Kozhaya (SnT - University of
Luxembourg) and Paulo Esteves-Verissimo (University of Luxembourg).

(b) IDHCC: A Security-Enhanced ID Hopping CAN Controller Design to Guarantee
Real-Time
Wufei Wu (Hunan Univeristy), Roy Kurachi (Nagoya University), Gang Zeng (Nagoya
University), Yutaka Matsubara (Nagoya University), Hiraoki Takada (Nagoya
Univeristy) and Renfa Li (Hunan University).

(c) A Byzantine Fault-Tolerant Key-Value Store for Safety-Critical Distributed
Real-Time Systems
Maite Appel (Max Planck Institute for Software Systems), Arpan Gurjati (Max Planck
Institute for Software Systems) and Björn B. Brandenburg (Max Planck Institute for
Software Systems).

(d) Lower-Bounding the MTTF for Systems with (m,k) Constraints and IID Iteration
Failure Probabilities
Arpan Gurjati (Max Planck Institute for Software Systems), Mitra Nasri (Max Planck
Institute for Software Systems) and Björn B. Brandenburg (Max Planck Institute for
Software Systems).

(e) SeedStrainer : An Approach to Improve the Hit Ratio of Malicious
Candidate URLs
Yasuyuki Tanaka (Institute of Information Security) and Atsuhiro Goto (Institute of
Information Security).

2 / 35

Message From the Chairs

This is the second iteration of the CERTS 2017 workshop, held in conjunction with IEEE RTSS.
This edition takes place in Paris, France. The technical program includes five peer-reviewed
papers and a keynote address by Matthias Schunter from Intel labs, Germany.

The aim of this workshop is to bring researcher and practitioners from a variety of domains, viz.,
real-time and embedded systems, security, dependability and cyber-physical systems to name
just a few. The idea is to foster a community that looks at all of these topics and develops
techniques, algorithms, policies and frameworks to improve the security and dependability of
critical systems.

CERTS owes its success to a variety of people. We would like to thank the steering committee
that consists of: Paulo Esteves-Verissimo, Marcus Volp, Antonio Casimiro and Rodolfo
Pellizzoni. We would also like to thank the technical program committee members for taking the
time to review and provide feedback for the papers. In addition, we would also like to thank
Frank Mueller, general chair RTSS, Isabelle Puaut, program chair for RTSS 2017 and Song
Han, workshops chair for RTSS 2017. Finally, the workshop cannot be a success without the
authors who submitted their papers and the attendees of the workshop.

We hope that you will enjoy the CERTS 2017 workshop and it will foster work in many new
directions.

Marisol Garcia Valls Sibin Mohan
Universidad Carlos III de Madrid University of Illinois at Urbana-Champaign
Co-chair Co-chair

3 / 35

Workshop Organizers and Program Committee

Program Chairs
Sibin Mohan, University of Illinois at Urbana-Champaign
Marisol García Valls, Universidad Carlos III Madrid

Steering Committee
Marcus Völp, SnT – University of Luxembourg
Paulo Esteves-Verissimo, SnT – University of Luxembourg
Antonio Casimiro, University of Lisboa
Rodolfo Pellizzoni, University of Waterloo

Program Committee
Lui Sha, University of Illinois at Urbana-Champaign
Christian Esposito, University of Naples Federico II
Hans Reiser, Universität Passau
Danny Dolev, The Hebrew University of Jerusalem
Antônio Augusto Fröhlich, Federal University of Santa Catarina
Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign
Miroslav Pajic, Duke University
Ravi Prakash, University of Dallas
Sasikumar Punnekat, Maelardalen University
Guillermo Rodriguez-Navas, Maelardalen University
José Rufino, Faculdade de Ciencias da Universidade de Lisboa
Elad Schiller, Chalmers University of Technology
Bryan Ward, MIT Lincoln Laboratory
Heechul Yun, Kansas University
Saman Zonouz, Rutgers University

4 / 35

Technical Papers

5 / 35

Facing the Safety-Security Gap in RTES:
the Challenge of Timeliness

Marcus Völp, David Kozhaya and Paulo Esteves-Verissimo
Critical and Extreme Security and Dependability Group (CritiX)
Interdisciplinary Center for Security, Reliability and Trust (SnT)

University of Luxembourg
L-2721 Luxembourg

Email: <name>.<surname>@uni.lu

Abstract—Safety-critical real-time systems, including real-time
cyber-physical and industrial control systems, need not be solely
correct but also timely. Untimely (stale) results may have severe
consequences that could render the control system’s behaviour
hazardous to the physical world. To ensure predictability and
timeliness, developers follow a rigorous process, which essentially
ensures real-time properties a priori, in all but the most unlikely
combinations of circumstances. However, we have seen the
complexity of both real-time applications, and the environments
they run on, increase. If this is matched with the also increasing
sophistication of attacks mounted to RTES systems, the case for
ensuring both safety and security through aprioristic predictabil-
ity loses traction, and presents an opportunity, which we take
in this paper, for discussing current practices of critical real-
time system design. To this end, with a slant on low-level task
scheduling, we first investigate the challenges and opportunities
for anticipating successful attacks on real-time systems. Then,
we propose ways for adapting traditional fault- and intrusion-
tolerant mechanisms to tolerate such hazards. We found that
tasks which typically execute as analyzed under accidental faults,
may exhibit fundamentally different behavior when compromised
by malicious attacks, even with interference enforcement in place.

I. INTRODUCTION

In the past, real-time systems were closed and, de-
spite telemetry, largely disconnected. They executed simple,
controller-like tasks that read sensor inputs, feed them into a
model of the controlled plant, and produce appropriate actuator
signals for maintaining safe and energy-efficient operation.
Simplicity brought predictability and hence safety in all but
the most rare circumstances. Safety violations, including late
control decisions, are only tolerated if it can be shown that
either their likelihood of occurrence is sufficiently low to
practically never occur over the lifetime of the fleet or if
their consequences are marginal. In particular, safety assurance
criteria demand replication only if the above properties could
not be achieved with singular systems, but not as precaution
against attacks.

Unfortunately, the coverage of the assumed level of safety
behind the above classical, accidental fault-prevention driven
development process, degrades when one assumes malicious
(and thus intentional) faults. Firstly, because these faults are no

This work is partially supported by the Fonds National de la Recherche
Luxembourg (FNR) through PEARL grant FNR/P14/8149128.

longer stochastic, and in consequence, a hazard is much less a
residual probability (of some defect being activated), and much
more a likelihood, once a defect known, and accessible to an
attacker. Secondly, because both these two latter conditions
have “improved” over the later years: vulnerability diagnostic
tools have improved, and highly-skilled adversaries target
these systems, as parts of critical information infrastructures.

It can reasonably be argued that such attacks were in-
feasible in the past, e.g., due to a simplicity-enforced lack
of exploitable vulnerabilities, and/or to limited connectivity
of real-time systems. However, the same cannot be said
about current critical application scenarios, autonomous or
cooperative driving, for instance, being a blatant example. In
fact, we have recently elaborated on the threat surface of the
cooperative-driving ecosystem [1], revealing what we call the
safety-security gap:

Vulnerabilities rarely triggered through combinations of
natural events may well cause serious harm when exploited
by adversarial teams.

Having said this, two important factors single out critical
real-time applications from general IT ones. First, both the at-
tack and the necessary defense are dictated by the environment
dynamics, making the slow and imprecise human-in-the-loop
approach to current IT security, infeasible, or ineffective at
best. Second, Cyber-physical Systems (CPS) may cause severe
impact upon failure, both to humans or to resources. Rather
than discharging threats with “unlikelihood” arguments, we
believe it is time to meet them with paradigms that can come
to exhibit a power and an effectiveness commensurate to the
adversarial power we begin to witness.

It seems intuitive that the decreased coverage of the level
of safety, which we have discussed earlier, could be regained,
if systems, albeit in the presence of defects and other faults
that may now be explored by attacks — with considerable
reachability and likelihood of activation — could still achieve
a similar level of failure avoidance as in the past, through
automatic means. Fault tolerance as a general predicate seems
to have been performing up to the task, in the scope of
accidental faults. Now, we would need both fault and intrusion
tolerance.

Fortunately, the fault and intrusion tolerance body of knowl-
edge (commonly called BFT, for ‘Byzantine Fault Tolerance’)

6 / 35

mailto:critix-pub@uni.lu

has had a dramatic development, and already gives us a few
preliminary solutions and insights to mitigate these threats in
an automatic way, at least if the system at hand is not real-
time. Replication and voting mask the actions of a minority of
compromised replicas behind a majority of healthy replicas,
reaching consensus [2]. Reactive rejuvenation of known or
suspected compromised replicas and occasional proactive re-
juvenation counteract exhausting the set of healthy replicas and
defy stealthy adversaries and detection flaws [3]. Rejuvenation
is of particular importance if adversaries persist in their attack
with the goal to eventually exceed the tolerance threshold of up
to f compromised replicas. Last but not least, diversification
ensures that adversaries cannot benefit from knowledge gained
during previous attack runs [4].

However, most of this research is concerned with asyn-
chronous or partially synchronous systems, and further re-
search is required on the extension of the paradigm to encom-
pass real-time behavior. Namely, because the impact of the
behavior of compromised components on system timeliness,
is not well understood. We give a contribution in this position
paper, at the specific level of task and component scheduling.
We argue that intrusion tolerance mechanisms, despite their
proven guarantees for facing attacks, lose their effectiveness
if applied without a good understanding of the interaction
between system tasks and components. To this end, we first
revisit the traditional real-time system development process to
highlight additional complications that arise when a subset of
tasks may have been compromised.

In Section IV , this paper sketches our vision of a real-time
BFT architecture featuring replication of “critical” components
or sub-systems as the key to face faults and compromises
through intrusions. More importantly, it shows in Section III,
that traditional simple replication mechanisms may fall short
of achieving their mission, in real-time systems. The reason
lies in unanticipated interference: due to lower level system
operations, tasks have access to different parts of common
resources, which in case of malicious behaviour allows at-
tackers to sabotage the whole resource. As such, replication,
under contemporary interference analysis, may not yield the
desired fault-/intrusion-tolerance. This paper concretely inves-
tigates such interferences, focusing on memory and cache
interferences in multi-core systems, and highlights pitfalls
of intrusion-agnostic analysis of task behavior deviation. We
identify the challenges when facing the timeliness threats of
compromised tasks, and sketch intrusion tolerance solutions
for partially interfering-controllable resources. To our surprise,
anticipating replication not only for fault but also for intrusion
tolerance, though it complicates system analysis, it also bears
opportunities to actually simplify the resulting scheduling
problem, possibly even leading to more optimistic response
times.

II. THE SAFETY-SECURITY GAP OF THE
COOPERATIVE-VEHICLE ECOSYSTEMS

Lima et al. [1] identified threats to the cooperative-vehicle
ecosystem, concluding that autonomous driving without coop-

eration is doomed to fail in the interim phase where both fully
autonomous and human-controlled vehicles share the road.

For one, while driving, humans base their decisions on a
variety of implicit protocols, interpreting driving styles, eye
contacts, subtle movements and similar indicators as signs
to evade an opposing car or to break aggressively (e.g.,
because the driver observed a scared look in a mother’s face
when chasing her child to prevent him from running onto the
street). Cooperation can partially close this communication gap
through explicit communication, until research incorporates
these implicit protocols.

The second aspect, despite the need for cooperation, lies in
the increased threat surface of autonomous and to a larger ex-
tent also cooperative vehicle ecosystems. Vehicles must defend
against attacks on global V2I, I2I communication infrastruc-
tures [5], [6], against V2V attacks, but also against the classical
in-vehicle communication networks such as CAN [7], [8]
and Flexray [9]. Already today, diagnostics and infotainment
access expose these safety-critical networks, with an often
non-redundant gateway being the last line of defense against
remote attacks.

Vulnerabilities in the software of this gateway, but also in
other components such as the complex scenery detection tasks
required for autonomous driving, put safe operation at risk.
Similarly vulnerable, but more exposed are road-side units and
cloud-based authentication mechanisms which are required in
cooperative scenarios to distinguish authentic from fake events.

In addition to the above cyber attacks, autonomous cars (but
likewise CPS and IoT systems) are also exposed to attacks
against their plant and environment sensing capabilities [10],
[11], a matter which although accidental already took their
first life toll [12]. Sensor fusion and cross-validation amongst
vehicles may be one solution to mitigate this threat. However,
mitigation strategies of this kind heavily rely on reliable V2V
and V2I communication, which is easily blocked through
jamming in current substrates if cyber attacks are accompanied
by physical attacks. In fact, Serageldin et al. [13] show
that jamming becomes over-proportionally effective at higher
DSRC bandwidths, leaving only low bandwidth solutions
tolerant to such attacks.

Clearly, analyses fall short of correctly valuing safety threats
if they anticipate only accidental faults and their likelihood,
but not coordinated attacks to cause these faults. In particular,
natural occurrences of combinations of independent faults are
extremely rare and as such often overlooked or misinterpreted
in terms of risk. However, adversaries in control of the system
may easily trigger such combinations and thereby exploit the
safety-security gap in security-agnostic analyses, a conclusion
which is also shared by Hamad et al. [14] in their attack-tree
based security analysis of automated obstacle avoidance.

III. TIMELINESS THREATS

Clearly, the fundamental prerequisites for meeting the above
challenges include (1) limiting the interference that compro-
mised tasks can have on other tasks, and (2) developing
mechanisms for enforcing these limits in a trustworthy manner.

7 / 35

Otherwise, any compromised task would be able to exceed the
bounds to jeopardize the timeliness of its critical counterparts.

A. Memory Isolation and Cooperative-Scheduling

An intuitive consequence of the need to limit interference
suggests isolation as a key factor for reducing the attack
surfaces inside real-time systems. This implies reducing the
ability of an adversary to compromise further components
once it has successfully compromised one.

Clearly, in systems without sufficient memory protection,
adversarial control may spread from one task to others until
critical system components become compromised.

Common practice of embedded real-time systems today is
to execute code directly from flash images, so one might
argue against code-level compromises. However, examples like
return-oriented programming [15] and similar techniques have
demonstrated how programs can be compromised without al-
tering their code. Also, over-the-air update capabilities demand
for mechanisms to replace pre-installed code. Not to mention
that higher-level tasks of autonomous driving, such as scenery
detection and trajectory planning, exceed today’s on-die flash
capacity and require instruction caches or scratch-pad memory
(i.e., modifiable storage) to keep up with their performance
requirements.

Notice that it is purposeful to enforce strong isolation
between tasks, even if one task produces a result, which
is an essential input to the other. Strongly isolating these
dependent tasks slows down adversaries, who are forced in
that case to attack by either breaking the isolation or through
the communication interfaces between tasks. Moreover, when
we later introduce replication, dependent tasks in a chain may
be replicated separately rather than the whole chain. This way,
each dependent segment benefits from a majority of healthy
replicas in the previous segment.

Now, for the same reasons that we have to disqualify real-
time systems with lack of strong isolation, we must also
disqualify cooperative scheduling and schedulers without time-
slice enforcement. In these systems, tasks are expected to vol-
untarily relinquish control over allocated resources. However,
compromised tasks, deviating from their analyzed behavior,
may never relinquish such resources, thereby falsifying ana-
lyzed resource bounds.

Fortunately, memory isolation and enforced schedules are
already state-of-the-art in many (though evidently, until re-
cently, not all [16]) automotive systems. In particular the lower
control levels run on physically isolated microcontrollers or
on well isolating RTOSs. However, the same care must be
exercised for the complex autonomous driving counterparts,
in particular due to the imminent threat of legacy OS compro-
mises.

B. Resource Bound Analysis

So far, car manufacturers refrained from using modern, su-
perscalar, multicore processors with their innumerous latency
hiding mechanisms. However, the performance demands of
higher autonomy levels [18] and the expected data rates that

Fig. 1. Path and cache analysis for WCET estimation (adopted from [17]
Fig.2).

need to be processed for cooperative driving may change
the picture. Let us therefore investigate more closely what
impact a deviation of a compromised task from its analyzed
behavior can have in modern multicore architectures that are
not specifically equipped with QoS mechanisms to ensure
minimal guarantees for critical tasks (e.g., by employing
AMBA 5’s bandwidth-control mechanisms [19]).

Traditionally, resource bound analysis is concerned with
finding the worst-case combination of task execution paths
that lead to the worst-case overall execution time and hence
the maximal interference tasks may have on each other. It is
therefore tempting to subject task groups to such an analysis
and run them with the obtained interference bounds.

When interference bounds can be controlled completely,
following this approach preserves safety even under attack.
However, not all resources, through which tasks may interfere
with others, can be controlled to the required degree. For these
resources, WCET analysis must not only compute the worst-
case combination of execution paths of analyzed tasks, but
also combinations where a subset of tasks execute in the worst
possible pattern.

Compromised tasks may exhibit arbitrary execution patterns
over the resources they can get hold of. That is, given a
statically allocated set of resources Ri, a compromised task
τi may access the resources in Ri in a pattern that maximizes
interference on other tasks. In systems with dynamic resource
allocation, as they will be required for more demanding
applications, compromised tasks τi may request further re-
sources, expanding Ri to the set of acquirable resources Rmax

i ,
and then construct a worst-case interference pattern. In this
situation, resource bound analysis has to anticipate arbitrary
execution over the extended set Rmax

i .
1) Caches: Let us exemplify the consequences of this

observation with the example of resource bound analyses for
processor data caches [17].

Caches are near core memories split into multiple pairs of
tag and data RAM (called ways) and equipped with a logic
to transparently resolve cache hitting and missing memory

8 / 35

Fig. 2. OS controllable cache colors. Although only cachline-size regions of
the same color collide in the cache, OS interference control is limited to those
index bits that range into the frame number. Interference by compromized
applications can therefore be much higher than when behaving as analyzed.

accesses. Extracting from the accessed address the lower most
bits after the cacheline offset (i.e., the index), the cache
logic determines the row in all ways and compares the tag
RAM against the remaining higher order bits (the tag) to
determine hits (exactly one match) or misses (no match). Since
replacement is only among cachelines of the same row, it is
possible to color memory locations by the rows in which they
will be inserted in the cache. The bottom part of Figure 2
illustrates this coloring and the split of the physical address
into tag, index and offset. Given cl large cachelines and an
associativity (no. of ways) a, a cache of size s = n · a · cl has
n colors.

Processors come with multiple levels of caches, some sep-
arately caching code and data, others both at the same time.
Lower levels (e.g. L1) are typically private (i.e., exclusively
used by a single core) while later levels (e.g. L2) act as victim
caches to keep evicted cachelines from L1 or as possibly
inclusive shared caches for all cores on the same die (e.g.,
L3). Inclusive means data cached in lower level caches is also
cached in L3 and if evicted in the latter, must also leave the
lower levels. Write-through caches update lower cache levels
and RAM immediately, write-back defers these updates and,
in case of L2 victim caches also the cacheline allocation, to
the time of eviction.

Figure 1 shows the building blocks of a worst-case exe-
cution time (WCET) pipeline. Starting from the executable
binary, the control flow graph and loop bounds are extracted,
which are then fed into a further value analysis for determining
address ranges for all accessed variables and other memory
objects. With these ranges, a micro-architectural analysis is
invoked, which includes a cache analysis. The cache analysis
itself proceeds by abstractly tracking the locations that may
and must hit in the cache along the replacement policy (e.g.,
sorted by age in case of least-recently-used (LRU) replace-
ment) and by merging the abstract states at control-flow join
points.

Figure 3 shows this merging for a 4-way set associative LRU
cache after executing the following code from empty caches:

d = 0 ;
i f (a > 0) { b = 1 ; c = 2 ; }

e l s e { d = 1 ; e = 2 ; }

Assuming all variables are in cachelines of the same color, d
and a must hit in the cache with age 4 and 3, respectively
(maximum age to conservatively bound cache hits), while c, e
may hit with age 1, d, b with age 2 and a with age 3 (minimum
age to conservatively bound cache misses, potential write
backs, and cross core evictions due to L3 cache inclusiveness).

2) Cache analysis under attack: From the above observa-
tion, it is tempting to extract the interference pattern of a
task from the addresses it accesses and to compute from this
cache related preemption delays (see e.g., [20]) and similar
interference bounds. Assume for example two tasks τ1 and
τ2 whereby the scheduler executes both tasks on the same
core while allowing τ2 to preempt each job of τ1 once. If τ2
accesses at most two cachelines of a particular color, the worst
case interference that may happen to τ1’s memory accesses of
this color are two evictions plus the write-back of two possibly
dirty lines (see right part of Fig. 3).

The same scenario when executing τ2 on a different core of
the same die and with an inclusive last-level cache effectively
reduces to two the ways available to τ1 for this color. This is
because τ2 may repeatedly access the two cachelines to evict
the memory cached by τ1. Of course, further analysis of τ2’s
access pattern allows exploiting more fine grain interleavings,
e.g., allowing τ1 a number of subsequent accesses in between
any two of τ2’s accesses.

Unfortunately, the operating system (OS) can enforce cache
colors only at the granularity of the smallest page size [21]
when allocating page frames for an application and only at
the cost of having to support paging, a feature necessarily
required by more resource demanding applications, but, due to
predictability concerns, rarely supported in real-time operating
systems (RTOSs) [22]. This lack of control stems from paging,
which allows the OS to define only those index bits that are
part of the page number (i.e., above the page offset). Assume
ps = k · cl holds for the size of the smallest page ps. Then,
because k cachelines fit this page, the number of enforceable
colors is reduced to n/k (e.g., yellow and green in Fig. 2).

Rephrasing the above statement slightly differently, a task τi
analyzed to access memory in the sequence of colors Sc

i may
exhibit arbitrary sequences S′

i of colors c when compromised,
where c agrees with a color in Sc

i in the index bits above the
page offset. In particular, compromised τi may access memory
that it did not access when executing as analyzed.

Although not yet quantified in adversarial settings, the
comprehensive benchmarks in [23]–[25] give a first indica-
tion on the impact that compromised tasks can have when
executing outside analyzed behavior, in particular when inter-
fering through shared implicit last-level caches. In addition,
these works suggest hardware and software-level solutions to
partially mitigate cross-core interference though shared caches.
For example, Kim et al. [24] introduces hardware way- and set-
partitioning mechanisms in MC2 for last-level caches (LLCs),
Kenna et al. [23] discuss page coloring for LLCs and Mancuso
et al. [25] introduce colored lockdown.

9 / 35

Fig. 3. Merging of abstract cache states at the join point after the conditional
branch.

Krüger et al. [26] work on counteracting these threats
through schedule randomization by probabilistically increasing
the distance between attacking and attacked tasks.

3) Memory, Busses and Pipelines: Coloring not only ap-
plies to caches, but extends also down to memory banks for
limiting DRAM refresh interferrence. However, like caches,
color-based control over DRAM banks only overapproximates
the banks that compromised tasks may access, which lets us
expect a similar discrepancy between analyzed and compro-
mised behavior.

Yun et al. [27] introduce a performance-counter based
framework to enforce memory bus bandwidths. However,
again, counters only have throttling capabilities, hence they
may not change access patterns at finer granularity. In partic-
ular buses like the CPU / GPU interconnects, which allow
bursts, may therefore exhibit large discrepancies between
analyzed and compromised behavior.

Last but not least, most of the above arguments implicitly
assumed a timing-anomaly free pipeline to enable the above
analyses in the first place. Modern out-of-order, speculative
and superscalar pipelines, as required for more demanding
tasks such as scenery analysis, defy to a large extent pre-
dictability and can, through careful exploits, be turned into
time consuming monsters.

IV. TOWARDS AN INTRUSION TOLERANT ARCHITECTURE

Observing the possibly devastating effect compromised
tasks can have on timeliness, leave alone correctness, we
sketch in this section possible architectures to tolerate intru-
sions. Our focus is thereby on correctness matters, leaving
timeliness opportunities from replication for the next section.

Figure 4 shows a birds eye view on our envisaged fault
and intrusion tolerant real-time architecture. Exemplified are
two complex tasks τ1 and τ2 controlling the plant, which may
be the controlled physical system or another system of the
same structure with lower-level control tasks. For example, for
drones [28], a common architectural pattern is to couple the
rotors and elevators with a flight stabilizing controller which

Fig. 4. Intrusion Tolerant Architecture for Complex Safety-Critical Real-Time
Systems

in turn receives signals from a more powerful, decoupled
system running more complex tasks such as flight planning
and autonomous landing.

A. Isolation

In Section III-A, we have already seen the essential need
for memory isolation to slow down adversaries. Candidates
for this isolation layer are real-time microkernels [29]–[31]
but but also hardware solutions are imaginable where replicas
run on dedicated soft cores or on hard cores in ASICs. The
remaining ingredients, which we discuss in the following, are
voting, sensor fusion, fall-back to simplex actuator control and
rejuvenation and diversification of replicas.

B. Replication and Voting

Tolerating complexity-induced vulnerabilities demands
replicating τ1 and τ2 such that up to f of their replicas can be
compromised. The remaining replicas should continue to reach
consensus on the values that replicas read from the replicated
sensors, on the inputs they receive from τ1 and on the outputs
τ2 forwards to the plant actuators. Unfortunately, classical BFT
consensus protocols, such as PBFT [2] or derived hybrid proto-
cols [32], [33], operate on an asynchronous (i.e., time agnostic)
system model. Applying them in a synchronous system setting
is not trivial, despite bounded message transmission times and
bounded execution times, as simply summing up the bounds
through all protocol steps easily leads to intolerable worst case
execution times.

For example, PBFT, MinBFT and CheapBFT achieve con-
sensus by a leader proposing the next client request to vote
on. However, in the presence of a faulty leader, this causes
downtimes until the remaining replicas agree on a new leader.
Leaderless protocols avoid this complication, however, they
generally require more replicas. For example, PBFT requires
n = 3f + 1 replicas to tolerate up to f faults. Hybrid
protocols reduce this number to 2f+1 respectively f+1 active
plus f passive replicas. Leaderless protocols require 5f + 1
replicas (or introduce further complexities [34] to maintain
n = 3f +1). An exception to this rule is BFT-TO by Correia
et al. [35]. building on top of a trusted ordering wormhole,
leaderless BFT-TO requires only 2f + 1 replicas. If leader-
based protocols are used in real-time systems, leader change
must be bounded and anticipated in the schedule.

10 / 35

Fortunately, most real-time tasks are triggered by the
physical system triggering events such as alarms or timers.
Reliable invocation of replicas may therefore avoid voting
in different orders. However still, faulty replicas (including
sensors) may lie about their values and in particular they
can lie differently to different client replicas. These incon-
sistent faults (also called ‘equivocation’) are prototypical of
the Byzantine fault phenomenon, and are avoided by either
extended number of players and rounds of communication,
or through cryptographic means such as signing messages for
authenticity and unforgeability. Hybrid protocols make use of
trustworthy sequencers (e.g., monotonic counters) which apply
cryptographic means to ensure that only a single vote can be
given for a single instance. However, naturally, cryptograpy
means come at non-negligible costs, which are not tolerable
in low latency real-time systems.

To avoid these costs, we instead propose to exploit the tight
coupling between components and to introduce hybrid com-
ponents that capture sensor and task values in a manner that
prevents overwriting during the same instance. For sensors,
capture/compare units suggest themselves as they also capture
the timing of the sampled event, thereby preventing mixing of
too time distant reads, provided of course the timing source
is trustworthy. OS controlled FIFO buffers and synchronous
IPC [30] achieve the same for intra task communication.

C. Sensor Fusion

Marzullo [36] shows that 3f +1 interval-type sensor values
are required to agree on an interval that contains the true
value, Schmid and Schossmaier [37] refine this result to
Lipschitz continuous intervals (i.e., small changes in the pro-
posed intervals lead only to small changes in the agreed upon
result), and Rushby proved correct both results in the theorem
prover PVS [38]. The continuous nature of the controlled plant
allows intra-task communication of largely diverse replicas to
operate in a similar manner, provided tasks can project the
intermediate results onto the control points of the other. The
consequences of course are that voting is no longer on identical
values but on semantically equivalent, yet possibly different
control commands.

D. Simplex and Actuators

Even though replication and voting reduce dependability
from a single instance to a majority of assumed healthy repli-
cas operating in consensus, a residual risk of common mode
failures remains, in particular if replicas exceed a certain size
and complexity. Common mode failures are caused by sys-
tematic vulnerabilities in all replicas. They allow adversaries
to exceed the tolerance threshold f , which BFT protocols
require to maintain safe operation. It is therefore also crucial
to explore simplistic fail-safes that reinstantiate safety in the
rare situations when consensus-reaching values are wrong.

Bak et al. [39] and Veríssimo et al. [40] propose hybrid
architectures wherein a simple controller monitors and returns
the system to a stable state if more complex controllers fail to
provide correct and timely results.

Fig. 5. Stochastic independent scheduling of dependent replicated tasks.
Shown are two tasks (blue - left) and (orange - right) with clearly dependent
execution times: an input of b leads to longer execution times in all replicas.
However, they complete for input a in one of the patterns shown on the right
with probability 1/6. In case all replicas respond correctly, the vertical bars
indicate majority completion time.

E. Rejuvenation and Diversification

Diversification and rejuvenation are essential ingredients for
maintaining a majority of healthy replicas and for reducing
the threat of common mode failures. Diversification prevents
adversaries from accumulating knowledge how to attack the
system, as long as all replicas are rejuvenated periodically
and faster than adversaries can compromise more than f
replicas [3]. Rejuvenated replicas are down and must be
compensated by additional replicas. The combination of the
above requirements means diversification must be automatic
(e.g., through obfuscating compilation [41]) and the real-time
system needs access to a continuous stream of such diverse
replicas. That is, they must either receive a continuous flow
of updates from infrastructure components or must perform
the compliation online in the same system. The flow/compi-
lation task is thereby weakly real-time with an attacker speed
determined periodicy, which means n new updates must be
produced within this period or the fail safe must kick in (and
possibly disrupt system continuity).

F. Actuators

Las but not least, when it comes to the actuation of the
physical plant, agreement must be reached which control
signal is applied to the plant. In the absence of consensus, this
means actuators must fall back to the fail-safe while discarding
the diverging replica decisions. Replication agnostic actuators
must be driven by a trusted-trustworthy component condensing
the multitude of proposed values.

V. TIMELINESS CHALLENGES AND OPPORTUNITIES

The correctness challenges of the previous section also
imply timeliness challenges. For example, all local downtimes
and recovery mechanisms must be bounded and scheduled to
guarantee (weak) timeliness of all tasks. In particular, WCET
bound preserving or at least WCET bound providing compila-
tion of diverse replicas is a challenging task that has yet to be
solved. Many other questions remain open, as pointed by our
reviewers: How to prove classical replication techniques to not
cause interference themselves? How can sensor fusion assist in
detecting interference in modern multicore architectures? How
can that interference be incorporated in the system so that it
can be tolerated? And how can rejuvenation and stochastic

11 / 35

scheduling be deployed safely without becoming a major
source of interference? However, replication also brings some
opportunities to simplify the WCET analysis and scheduling
problem.

For example, in a multicore system, the same non-replicated
schedule can be reused when critical components are repli-
cated. Rather than allocating replicas to fixed cores (e.g.,
replica ri to core i) it may be more beneficial to randomize this
allocation in order to exploit the stochastic independence of
replicas of the same task, even if tasks are dependent. Consider
the example in Figure 5 with two replicated tasks τ1 and τ2,
which are I/O dependent as illustrated in Figure 4. Even though
the output of τ1 influences the execution performed in τ2,
different replicas have different execution times for producing
this output (in the replicas τ i1 of τ1) and for consuming this
output (in the replicas τ j2 of τ2). Randomizing the allocation of
τ j2 relative to τ i1 leads to a distribution of combined execution
times for this input/output pair of which, as it is common
for replicated settings, only a correct majority of 2f + 1
(respectively f +1) replicas must reach agreement before the
task’s deadline Di. The other replicas need only to complete
by Ti (i.e., Ti −Di time units later for deadline constrained
tasks) or not at all if the task itself is stateless.

VI. ACKNOWLEDGMENTS

The authors like to thank the anonymous reviewers for
their insightful comments and suggestions to improve the
paper, raising in part additional challenges, which we took
the freedom to include in the above description.

VII. CONCLUSIONS

Revisiting the threat surface of safety-critical real-time
systems, we have identified several challenges but also oppor-
tunities, for applying fault and intrusion tolerance techniques,
which not only mitigate accidental faults but also protect the
system against targeted attacks, and do both in an automatic,
unattended way. We analyzed the situation at the specific
level of task and component scheduling, and studied problems
arising when malicious fault and intrusion tolerance must
take a timeliness and scheduling perspective into account.
Major challenges and hence directions for future work include
limited interference controls when tasks deviate from analyzed
behavior, definition of safe fail stops to compensate common
mode failures in complex replicated tasks, and analysis aware
obfuscating compilation.

REFERENCES

[1] A. Lima, F. Rocha, M. Völp, and P. Esteves-Verissimo,
“Towards safe and secure autonomous and cooperative
vehicle ecosystems,” in CPS-SPC, ACM, Vienna, Aus-
tria, Oct. 2016.

[2] M. Castro and B. Liskov, “Practical byzantine fault
tolerance,” 1999, pp. 173–186.

[3] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves,
and P. Verissimo, “Highly available intrusion-tolerant
services with proactive-reactive recovery,” IEEE Trans.
on Parallel & Distributed Systems, pp. 452–465, 2009.

[4] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz,
“Sok: Automated software diversity,” in Proceedings of
the 2014 IEEE Symposium on Security and Privacy,
ser. SP ’14, Washington, DC, USA: IEEE Computer
Society, 2014, pp. 276–291.

[5] J. R. Douceur, “The Sybil attack,” in Peer-to-peer
Systems, Springer, 2002, pp. 251–260.

[6] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Wormhole
attacks in wireless networks,” IEEE Jour. on Selected
Areas in Communications, vol. 24, no. 2, pp. 370–380,
2006.

[7] K. Pazul, “Controller area network (CAN) basics,”
Microchip Techn. Inc, 1999.

[8] J. Staggs, “How to hack your mini cooper: Reverse
engineering CAN messages on passenger automobiles,”
Institute for Information Security, 2013.

[9] F. Consortium et al., “Flexray communications system-
protocol specification,” Version, vol. 2, no. 1, pp. 198–
207, 2005.

[10] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna,
D. Erhan, I. Goodfellow, and R. Fergus, “Intrigu-
ing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[11] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote
attacks on automated vehicles sensors: Experiments on
camera and lidar,” in Black Hat Europe, 2015.

[12] Tesla’s autopilot has had its first deadly crash, https:
//www.wired.com/2016/06/teslas-autopilot-first-deadly-
crash/, Accessed: 2016-07-05.

[13] A. Serageldin, H. Alturkostani, and A. Krings, “On the
reliability of dsrc safety applications: A case of jam-
ming,” in 2013 International Conference on Connected
Vehicles and Expo (ICCVE), Dec. 2013, pp. 501–506.

[14] M. Hamad, M. Nolte, and V. Prevelakis, “Towards
comprehensive threat modeling for vehicles,” in 1st
Workshop on Security and Dependability of Critical
Embedded Real-Time Systems, M. Völp, P. Esteves-
Verissimo, A. Casimiro, and R. Pellizzoni, Eds., co-
located with the IEEE Real-Time Systems Symposium
2016, IEEE, Porto, Portugal, Dec. 2016, pp. 31–36.

[15] E. Buchanan, R. Roemer, H. Shacham, and S. Savage,
“When good instructions go bad: Generalizing return-
oriented programming to RISC,” in Proceedings of CCS
2008, P. Syverson and S. Jha, Eds., ACM Press, Oct.
2008, pp. 27–38.

[16] C. of Oklahoma County, Bookout vs toyota,
http://www.safetyresearch.net/Library/
Bookout_v_Toyota_Barr_REDACTED.pdf, Accessed:
2016-07-22.

[17] M. Lv, N. Guan, J. Reinecke, R. Wilhelm, and W.
Yi, “A survey on static cache analysis for real-time
systems,” Leibnitz Transactions on Embedded Systems,
vol. 3, no. 1, pp. 1–48, Jun. 2016.

[18] C. Hayes, Driving along at full speed for autonomous
vehicles, Jan. 2016.

[19] ARM, AMBA5 ahb protocol specification, Oct. 2015.

12 / 35

https://www.wired.com/2016/06/teslas-autopilot-first-deadly-crash/
https://www.wired.com/2016/06/teslas-autopilot-first-deadly-crash/
https://www.wired.com/2016/06/teslas-autopilot-first-deadly-crash/

[20] Z. Zhang and X. Koutsoukos, “Cache-related preemp-
tion delay analysis for multi-level inclusive caches,” in
2016 International Conference on Embedded Software
(EMSOFT), Oct. 2016, pp. 1–10.

[21] J. Liedtke, H. Hartig, and M. Hohmuth, “Os-controlled
cache predictability for real-time systems,” in Proceed-
ings Third IEEE Real-Time Technology and Applica-
tions Symposium, Jun. 1997, pp. 213–224.

[22] Free RTOS.
[23] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Cac-

camo, and R. Pellizzoni, “Real-time cache management
framework for multi-core architectures,” in 19th IEEE
International Conference on Real-Time and Embedded
Technology and Applications Symposium (RTAS 2013),
Philadelphia, PA, USA.

[24] B. Ward, J. Herman, C. Kenna, and J. Anderson,
“Making shared caches more predictable on multicore
platforms,” in 25th Euromicro Conference on Real-Time
Systems, Jul. 2013, pp. 157–167.

[25] N. Kim, B. Ward, M. Chisholm, C.-Y. Fu, J. Anderson,
and F. Smith, “Attacking the one-out-of-m multicore
problem by combining hardware management with
mixed-criticality provisioning,” Real-Time Systems, spe-
cial issue of outstanding papers from the 22nd IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS 2016), vol. 53, no. 5, pp. 709–759,
Sep. 2017.

[26] K. Krüger, M. Völp, and G. Fohler, “Improving secu-
rity for time-triggered real-time systems against timing
inference based attacks by schedule obfuscation,” in
Euromicro Conference on Real-Time Systems (ECRTS)
- Work-in-progress Session, 2017.

[27] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni,
“PALLOC: DRAM bank-aware memory allocator for
performance isolation on multicore platforms,” in Intl.
Conference on Real-Time and Embedded Technology
and Applications Symposium (RTAS), IEEE, 2014.

[28] P. Vivekanandan, G. Garcia, H. Yun, and S. Keshmiri,
“A simplex architecture for intelligent and safe un-
manned aerial vehicles,” in International Conference
on Embedded and Real-Time Computing Systems and
Applications (RTCSA), IEEE, 2016.

[29] D. Hildebrand, “An architectural overview of qnx,” in
Proceedings of the Workshop on Micro-kernels and
Other Kernel Architectures, 1992, pp. 113–126.

[30] J. Liedtke, “On micro-kernel construction,” in Proceed-
ings of the 15th ACM Symposium on Operating System
Principles, 1995, pp. 237–250.

[31] (). Fiasco, [Online]. Available: https://os.inf.tu-dresden.
de/fiasco/.

[32] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung,
and P. Veríssimo, “Efficient byzantine fault-tolerance,”
IEEE Trans. Computers, vol. 62, no. 1, pp. 16–30, 2013.

[33] T. Distler, C. Cachin, and R. Kapitza, “Resource-
efficient byzantine fault tolerance,” IEEE Trans. Com-
puters, vol. 65, no. 9, pp. 2807–2819, 2016.

[34] F. Borran and A. Schiper, “A leader-free byzantine
consensus algorithm,” in Int. Conf. on Distributed Com-
puting and Networking (ICDCN), 2010.

[35] M. Correia, N. F. Neves, and P. Verissimo, “Bft-to:
Intrusion tolerance with less replicas,” The Computer
Journal, vol. 56, no. 6, pp. 693–715, Jun. 2013.

[36] K. Marzullo, “Tolerating failures of continuous-valued
sensors,” ACM Transactions on Computer Systems, vol.
8, no. 4, pp. 284–304, Nov. 1990.

[37] U. Schmid and K. Schossmaier, “How to reconcile fault-
tolerant interval intersection with the lipschitz condi-
tion,” Dirstibuted Computing, vol. 14, no. 2, pp. 101–
111, May 2001.

[38] J. Rushby, “Formal verification of marzullo’s sensor
fusion interval,” SRI International, Tech. Rep., Jan.
2002.

[39] S. Bak, D. Chivukula, O. Adekunle, M. Sun, M. Cac-
camo, and L. Sha, “The system-level simplex architec-
ture for improved real-time embedded system safety,” in
Real-Time and Embedded Technology and Applications
Symposium (RTAS), IEEE, 2009, pp. 99–107.

[40] P. Verissimo and A. Casimiro, “The timely computing
base model and architecture,” IEEE Transactions on
Computers, vol. 51, no. 8, pp. 916–930, Aug. 2002.

[41] R. Pucella and F. B. Schneider, “Independence from
obfuscation: A semantic framework for diversity.,” in
19th IEEE Work. on Computer Security Foundations,
2006, pp. 230–241.

13 / 35

https://os.inf.tu-dresden.de/fiasco/
https://os.inf.tu-dresden.de/fiasco/

IDHCC: A Security-Enhanced ID Hopping CAN
Controller Design to Guarantee Real-Time
Wufei Wu1,2, Ryo Kurachi2, Gang Zeng3, Yutaka Matsubara2, Hiroaki Takada2, Renfa Li1
1College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.

2Graduate School of Informatics, Nagoya University, Nagoya, Japan.
3Graduate School of Engineering, Nagoya University, Nagoya, Japan.

wufeiwu@hnu.edu.cn, kurachi@nces.is.nagoya-u.ac.jp, sogo@ertl.jp, yutaka@ertl.jp, hiro@ertl.jp, lirenfa@hnu.edu.cn

Abstract—Controller Area Network (CAN) is the most widely
used protocol for safety critical applications in current vehicle
electronic systems. The security enhancement of CAN is a multi-
constrained and cost-sensitive optimization problem, our aim is
to propose a real-time and security mechanism. First of all, we
propose a novel ID (identify) hopping CAN (IDH-CAN) mech-
anism to address both security and safety constraints. Second,
to improve the security performance of CAN, we design and
implement the IDH-CAN controller (IDHCC) on FPGA, which
works as a hardware firewall in the data link layer to isolate
the applications from the physical layer. Third, our simulation
and practical evaluations demonstrate the effectiveness of this
approach in defense reverse engineering, targeted DoS and replay
attacks without violating design constraints and highlight the
importance of considering security together with other metrics
during the design stages for automotive real-time applications.

Index Terms—Autonomous; Vehicle Security; ID hopping;
Controller Area Network (CAN); Real time; Schedulability

I. INTRODUCTION

The security attacks against CAN bus have attracted in-
creasing research attention[1]. As mentioned in [1][2] and [3],
CAN does not offer a security mechanism, such as data frame
authentication or encryption, but ECUs connected by CAN
are usually safety-critical (i.e., anti-lock braking system (ABS)
and electronic stability program (ESP)) components that need
to guarantee strict end-to-end latencies. Attacks against a CAN
bus will lead to privacy disclosure and even life and property
threats in extreme circumstances. As defined by ISO 26262
(road vehicles functional safety) [4], CAN clusters in vehicles
need a high automotive safety integrity level (ASIL). If the
CAN bus has no security mechanism for data transmission,
then the attacker can easily monitor or even control the vehicle.
The situation becomes worse when the vehicle is autonomous
vehicle[5].

To ensure automobile information security, some standards
were established. SAE J3061[6] was published in January
2016 by the Society of Automotive Engineers (SAE) inter-
national, which defined the process framework of a security
lifecycle for the security lifecycle of cyber-physical vehicle
systems. The software specification in the AUTOSAR Secure
Onboard Communication (SOC) module[7] was developed to
create resource-efficient and practicable authentication mech-
anisms for critical data transport among ECUs. This specifica-
tion is based on the assumption that symmetric authentication

approaches with message authentication code (MAC) were
used (e.g., a CMAC[8] based on AES[9] with an adequate
key) [10][11] . However, given the limited data field of CAN
(maximum of 64 bits), the MAC (256 bits) needs to be divided
into four parts, and each part needs to be included in the
subsequent messages. This process consumes additional time
and bandwidth.

In this study, we propose a hardware-based ID hopping
CAN controller (IDHCC) an conduct several experiments to
test its security performance under the design constraints. The
main contributions of this paper are as follows:

1) A security enhancement CAN mechanism based on ID
hopping called IDH-CAN was designed. This mechanism
protects the network from sniffing as well as targeted
DoS attacks and replay attacks.

2) A hardware-based CAN controller intellectual property
(IP) for IDH-CAN called IDHCC was designed and im-
plemented on a field-programmable gate array (FPGA).
This controller works on the data-link layer and is
compatible with the existing upper layer protocols and
applications, such as SAE J1939.

3) The security performance of the proposed mechanism
was analyzed. Several different security mechanisms
were compared with IDH-CAN.

The rest of the paper is organized as follows. Section II in-
troduces the research background and related work. Section III
describes attack model of our method. Section IV describes
our proposed solution as well as the basic idea and details
of IDHCC, including its operation, synchronous method and
error recovery mechanism. Section V discusses the hardware
implementation of IDHCC. Section VI evaluates IDHCC from
resource consumption and security performance. Section VII
concludes the paper.

II. BACKGROUND AND RELATED WORKS

A. Security research on CAN

Different security mechanisms have been designed to pro-
tect CAN from attacks and meet its security demands. The
existing CAN security methods can be divided into three
categories. The methods in the first category are authenticated
by digital signature and MAC, which will consume limited
payload of CAN message frame [12][13] and computing

14 / 35

resources of node. Compare to the encrypted CAN messages,
due to the constraints of CAN system (e.g., bandwidth and
real-time), ID hopping are more suitable for CAN message.
The second category includes CAN+ [14][15], a CAN-specific
authentication model that requires additional messages. The
third category is anonymous IDs. In ESCAR Europe 2015,
Han et al. introduced a new solution called the identity-
anonymity CAN (IA-CAN) protocol [16]. The major drawback
of IA-CAN is cannot guarantee the worst-case response time
(WCRT) of CAN messages, because the ID is randomly
generated (ID field of CAN is used for message arbitration).
Therefore, the IA-CAN is not suitable for time-sensitive sys-
tems.

B. Related Work

The most relevant work to our method is the ID hopping
mechanism proposed by Humayed et.al [17], the authors used
a special ID from the gateway as a parameter of hopping
synchronization and then implemented ID hopping using a
software way. Therefore, the switching time is unavoidable.
Our approach differs from the ID hopping mechanism in
three ways. First, they choose software implementation, we
implement with hardware, therefore, our method does not
require additional computation time. Second, different ways
of hopping synchronization, special ID was used in [17] to
achieve synchronization, it means that the additional message
is unavoidable. But the message counter was used in our
researches. Due to the CAN protocol’s broadcast nature,
message counters is a parameter that is shared instantaneously
by nodes on CAN bus. Therefore, our method requires less
additional messages. Third, two methods have different ways
of generating ID hopping table. In [17], the new IDs are
equal to the previous IDs add offset after hopping in the
runtime. However, in our method, to increasing the diversity of
IDs, ID hopping table is generated in the phase of system
design, and stored in a tamper-proof storage (e.g. in a SHE or
HSM secure memory) to ensure that only authenticated nodes
can access the table.

III. ATTACK MODEL

In our threat model, we assume attackers can access CAN
bus. The available methods, including but not limited to:
Bluetooth, OBD II, WiFi, physical access and USB. The
attacker can be easy to reverse of CAN messages in real
vehicles, because there is no message authentication in CAN
bus. Once an attacker gains access to the CAN, the attacker
can sniffing, spoofing, replay, and denial-of-service (DoS)
attacks. To make up for this deficiency, references to [18],
we constructed an attack model as shown in Figure 1, among
them, the high-priority DOS attack is the type of attack that
we currently cannot resolve. Most of the available security
measures for CAN focus on protect the message payload,
but our threat model focuses on improving the security of
the ID field. The motivation of this paper is to provide the
countermeasures for sniffing and reverse engineering of CAN
messages by integrating the CAN-ID masquerade techniques.

Attacker accesses the vehicle indirectly

via Bluetooth, Wifi, Satellite radio, etc.

Attacker accesses the vehicle physically via the

OBD-II diagnostics port, smart charging services

port or accesses the physically bus directly.

Attacker has access to the CAN bus;

And, no message authentication in the

CAN bus.

Attacker can read and log any

messages sent across the CAN bus

 Attacker can read and send any

messages they want
Attacker can use sniffing to discover

properetary CAN messages, typically

only known to car manufacturers

Attacker can

use a Denial

of Service

(DoS) attack

by repeattedly

sending high

priority

messages,

blocking

other

messages in

the CAN bus

Attacker can

send precise

messages and

reflash an

ECU to

modify its

behavior

Attacker can

send

messages via

the CAN bus

to ECUs,

controlling

nearly all of

the

vehicle’s

components

Attacker can

use a replay

attack by

repeattedly

sending

previous

messages to

shut down the

network and

ultimately the

vehicle.

Fig. 1. An attack model for the CAN bus.

This means that our approach not only increases the difficulty
of reverse-engineering, but also can resist most attacks against
CAN, except for high-priority DoS attacks.

IV. PROPOSED MECHANISM

In this section, we present a security mechanism under
real-time constraints, which is based on the randomly change
of sending CAN-ID to protect sniffing and replay of CAN
messages. To simplify the complexity of the problem, we make
the following assumptions which are reasonable in practical
applications[19]: 1) the sender and receiver of each message
have been assigned to specific ECUs, and 2) the allocation of
the ID for the CAN message has been completed from the
application layer viewpoint.

A. ID hopping CAN

Figure 2 presents an overview of the ID hopping
mechanism for CAN based on the message counter and
ID hopping table. Two kinds of IDs are available in IDH-
CAN, App IDs is used as the CAN-ID of CAN message in
application software, while the physical layer ID is defined
as Phy IDs, which can be obtained by looking up the
ID hopping table. ID hopping table (with maximum 16
pages Phy IDs) is generated in the design phase based on
App IDs and will be written on the IDH-CAN controller.
The idea is that every IDHCC will have multiple translation
tables (ID hopping table), where each page maps ”natural”
message IDs (App IDs) to other IDs (Phy IDs). The IDs of
sent messages are translated via the currently active mapping
page before they are placed on the wire. Similarly the IDs
of the received messages in which an ECU is interested
are converted via the reverse mapping page (in the receive
”filter”). All the ECUs switch from page to page according to
a global message count, because CAN is a broadcast network.
Those messages with a Phy ID, which is un-mapped in

15 / 35

Application layer

Physical layer

 Data link layer

Hopping

Controller

Message

Counter

ID_ hopping_table write

ID hopping table

Application_ IDs write

New _ID for

receveier and

sender

ID from application

(Its needs to be written in
the deployment phase)

APP_IDs

Application ID

table based priority

New ID filter

Message set (Used to send): Message set (Received message):

Messages transmitted on the network

2

APP_IDs

...

Application_ID Playload

...

App_IDs

...

...

Application_ID Playload

...

...

Physical_ID Playload

...

order

Phy_IDs

...

ID priority order

ID from physical bus

…
..

.

…
..

.

ID priority

order and

page address

APP_IDs

16
 p

ag
es

Phy_IDs

...

ECU 2

ECU 3

ECU 4

...

 Accept

Filter

1

ID priority

order

ID hopping

Controller

(Its needs to be
written in the

deployment phase)

Fig. 2. Overview of ID hopping mechanism for CAN based on the message counter and ID hopping table.

ID hopping table will be discarded (allegedly making it dif-
ficult for the attacker to inject messages). An important aspect
is that each hopping must maintain the relative numerical order
of message App IDs (given that the ID serves as a priority
in CAN, switching the relative order of two IDs will change
the WCRT of the messages).

As shown in Figure 3, the ID hopping tables are stored
in IDH-CAN controllers of transmitter node and receiver
node respectively, the size of the table equal to Phy IDs ∗
pages number (e.g., 4 ∗ 11 in this examples). After ID hop-
ping is performed, one page of ID hopping table is choose
as Phy IDs in IDH-CAN controllers based on message
counter, the priority order of Phy IDs is guaranteed to fixed
according to the order of App IDs. For the sending node,
the IDHCC maps the App ID to the Phy ID based on the
priority order of the message. Therefore, the actual transmitted
message ID becomes more diverse. For receiving nodes, the

0x7FF
0x7FF0x7FF

..
.

0x7FF

0x000

..
.

0x7FF

0x000

..
.

App_IDs of Transmiter

with 11 IDs

App_IDs of Receiver

with 11 IDs

IDH-CAN

controller

IDH-CAN

controller

ID hopping

table with

4*11 IDs

One page of ID hopping table is

choosed as Phy_IDs basd on

message counter

Message counter Message counter

0x7FF

0x000

..
.

Fig. 3. An examples of IDH-CAN.

IDHCC maps the Phy ID to the App ID by looking up
the ID hopping table based on the priority order of the
message. Meanwhile, the receiving ECUs use the current page
of ID hopping table to get the new filter registers to filter the
incoming data frames before verifying data integrity. Invalid
data frames are filtered without requiring any additional run-
time computations, because our ID hopping techniques are
implemented in CAN controller hardware.

Arbitration ID hopping in this study is synchronized by the
message counter, when 8 messages are transmitted over the
network, there will be a hopping in the CAN network. We will
improve security by designing the hopping rule in our feature
work (et.al, different number of messages as the hopping cycle
or different hopping distance can be set). Therefore, while
all message relative priority order is fixed for authentication
nodes, there is no way to determine the relative priority
sequence of messages for non-authentication nodes. Because
they don’t know the hopping rules.

For gateway environment: Message counter in different
CAN clusters is different. But multiple CAN clusters inter-
connection through the gateway is common for automotive
electronic system. For messages that need to cross gateways,
the hopping mechanism and available range of IDs in different
CAN clusters can be different. For example, if messages
from cluster 1 need transmit to cluster 2. First of all, the
Phy IDs 1 from cluster 1 maps to its App IDs 1 in
gateway node, and then App IDs 2 maps to App IDs 2.
Then, according to the target cluster 2’s hopping mecha-
nism and ID hopping tables, the App IDs 2 changed to
Phy IDs 2. At last, The message is transmitted. Namely,
the cross-gateway messages need to be mapped twice: clus-
ter 1 (Phy IDs 1)→ gateway(App IDs 1→ App IDs 2

16 / 35

)→ cluster 2 (Phy IDs 2), which means that the message
counters are not need to synchronized between different CAN
cluster.

B. Schedulability analysis

Consequently, CAN message usually has a hard deadline
constraint, which is denoted by Dm. The tasks on the receiving
nodes may have multiple timing requirements on the message,
but in such a hard real-time system, we assume that Dm is
the tightest time constraint. Therefore Dm must be met in
the security enhancement solution. A message is said to be
schedulable if and only if its worst-case response time is less
than or equal to its deadline (Rm <= Dm). The system is
schedulable if and only if all of the messages in the system
are schedulable.

As described in [20], the message response time Rm is
composed of three terms, namely the release jitter Jm, the
queue delay Wm, and the maximum transmission time Cm.

Rm = Jm +Wm + Cm (1)

The maximum transmission time Cm is determined by the
message payload sm (1 to 8 bytes), the ID format (11 or 29
bit), and the bit time. The queue delay Wm is determined
by two factors, namely the blocking factor Bm due to non-
preemptive message transmission and the interference due to
higher priority messages (denoted by the set hp(m)).

Wn+1
m = max (Bm, Cm) +

∑
∀k∈hp(m)

dW
n
m + Jk + τbit

Tk
eCk

(2)
A simple upper bound on the blocking factor Bm is given by

the transmission time of the longest message on the network.

Bm = max
∀k∈lp(m)

{Ck} (3)

Based on formulas (2) and (3), the available time for the
ID hopping in the CAN bus system can be computed as

Cm =

(
g + 8Sm + 13 + bg + 8Sm − 1

4
c
)
τbit (4)

where Sm is the data field of CAN that is assumed to be 8
bytes. g (i.e., the worst-case bit-stuffing length) is equal to 34
for standard frame format or 54 for extended format (29-bit
ID field), and τbit is the bus bit rate. For 11-bit identifiers at
1 Mbps bit rate, Cm is equal to 0.136ms. Given the limited
available time for ID hopping the hardware implementation
plan for the ID hopping mechanism is selected in this study.

Previous works on the security enhancement of CAN did not
consider the problem of schedulability analysis. For example,
given theWm in CAN+ and the fact that Identifys Anonymous
CAN (IA CAN) has been changed, their schedulability analy-
sis model need to be changed inevitably. Given that the IDH-
CAN is implemented, its results guarantee the invariability of
the schedulability analysis model of CAN introduced in [21].

(Transmitter) (Receiver or other nodes in CAN cluster)

Channel reset CAN message

with special ID.

 CAN messag

with hopping ID.

ECU_t ECU_r

Pass the filter, do:

1: Accept message.

2: Message counter

+1.

3: Looking up new ID

table for transmitter

and creat new filter

sets for receiver.

Message counter

value reset to 0.When state is Power on

or Missing message

State: Normalization.

After message send out

1: Message counter + 1

2: Looking up new ID

table for transmitter and

creat new filter sets for ID

hopping controller

ID

hopping

table

Filter

Hopping conditions is ok

Yes

No

Ignore and do:

1: Message counter +1.

2: Looking up new ID table for

transmitter and creat new filter

sets for receiver.

Fig. 4. Process diagram of IDH-CAN.

C. Operation of IDH-CAN

This section explains how IDH-CAN works in automotive
electronic system development. For ease of understanding, a
process diagram of IDH-CAN is presented in Figure 4. The
deployment of IDH-CAN is divided into five steps from the
perspective of the designer.
• Step 1: According to the functional requirements of the

system, the number of message set N and its priority
order P{p1, p2, ..., pn} can be determined. The number
of messages used in one cluster is not large and is usually
within 256 or less [22].

• Step 2: Each message in the CAN cluster is assigned a ID
as a priority parameter. A total of 2048 possible message
IDs can be placed in one CAN cluster. According to
CN

2048, the available ID combinations for Phy IDs are
very large.

• Step 3: According to the relationship between ECUs
and messages, after Step 2, the acceptable message set
named RX set can be determined for each ECU and
each ID page at different message counter moments. With
RX set, the filter registers for each ECU at each ID
pages can be obtained. New ID hopping page for IDH-
CAN can be obtained by adding the registers to the ID
hopping pages generated in Step 2.

• Step 4: In the design or upgrade phase of the vehicle
electronic system design, the ID hopping table and the
sorted App IDs are written to the ID hopping controller
(details will be introduced in Section V).

• Step 5: Startup or restart the system.

D. ID hopping synchronization

Synchronization is especially important for ID hopping
CAN and anonymous ID. Through the CAN analysis and
CAN controller implementation, In this study, the message
counter is used for ID hopping synchronization (select one
page from the ID hopping table as a new one). Where the
ACK signal in the data link layer can be used to count
the message counter, which can be used as an ID hopping
synchronization parameter. The ID hopping is performed on a
cycle of 8. That is, after 8 messages are transmitted over the
bus, each IDHCC get this shared parameter, and ID hopping

17 / 35

…...

110 1001 0001

ID table for M_1

100 1101 0001

000 1001 1101

000 1111 1101

..
.

110 1001 0011

ID table for M_2

100 1101 0011

000 1001 1111

000 1111 1111

..
.

110 1011 0001

ID table for M_n

100 1111 0001

000 1011 1101

001 1111 1101

..
.

If mesaage

counter = 0

If Hopping

condition is OK

(e.g., message

counter =8)

000 1011 1101

000 1001 1111

One page of ID hopping table

…...

000 1011 1101

000 1001 1111

000 1001 1101

…...

...

ID_hopping_table for

ECUs

… ...

Fig. 5. ID hopping synchronization from the perspective of the message and ECU.

occurs synchronously. Because the relative priority order of
the message is constant in each page, the priority order is
used as a parameter to the message mapping.

As shown in Figure 5, from the viewpoint of the message,
the ID of the message at each moment will correspond to a new
ID based on the ID hopping table and priority order (ac-
cording to the lookup Application IDs table) of the message.
However, from the perspective of the ECU, each combination
can be treated as one ID page. The ID hopping table, as a
3D array, can be written to the IDHCC. Taking into account
the limited register resources and cost factors, the table size
in this study is divided to 4, 8 and 16 pages with 256 IDs per
page.

E. Startup and recovery mechanism

Synchronize of hopping described in this study is based
on the message counter. The failure of the node to monitor
the message will lead to synchronization failure (i.e., missing
messages). Although, according to the characteristics of CAN,
this phenomenon rarely occurs. But, a robust recovery mecha-
nism for IDH-CAN is necessary, especially for an autonomous
vehicle system. In this study, a startup message with special
ID (such as 0x01) is used. In the case where a network idle is
detected and message counter equal to the threshold of hop-
ping (e.g., 8 in this study), a startup message carrying a byte
load (used to select the next page from ID hopping table)
is sent by one of the nodes. When the other node receives
the message, it will carry on the ID hopping, realize the error
recovery and start.

V. HARDWARE-BASED IMPLEMENTATION

A. Hardware-based implementation

To implement IDH-CAN, we present an ID hopping CAN
controller design and discuss its implementation. This security
enhancement CAN controller is based on the OpenCores
open source IP core community CAN controller designed by
Mohor [23]. The IP core uses the Verilog hardware description
language to create the SAJ1000 controller. The supporters
of CAN 2.0A/B protocol can also support CAN standard
frames (11-bit identification code) and extended frames (29-bit
identification code). CAN 2.0A/B has 64 bytes receive FIFO,
and the rate can up to 1 Mbit/s. As shown in Figure 6, four
modules are present in the top-level module of the IDHCC,

namely ID hopping module, can registers, can btl, and
can bsp. ID hopping module has two single modules,
namely app id priority table and ID hopping table. The
app id priority table gets from the priority order sorted
App IDs. With message counter synchronization, the ID
hopping controller controls the process of hopping.

Hopping controller: According to the message counter, the
ID hopping controller (part of the CAN controller) converts
App IDs to Phy IDs for the transmission message. Under
the action of the controller, receive filter registers can be
obtained from the new page of ID hopping table. The
ID hopping controller looks up the ID hopping table with
different message counter values for different messages. The
hopping controller module is connected to the can bsp module
via a 32-bit bus.

Application IDs table: An application IDs table named
app id priority table contains the message IDs from the
application layer software that need to be sent or received. The
IDs in the table is sorted based on their priority. Accordingly,
this table will be used to find the priority of the messages
and to obtain the message IDs based on their priority. The
maximum size of the application IDs table in this paper is
256.

ID hopping table: To keep the order of priority, we need
to guarantee that each ID combination has a relative priority
order. The ID hopping table contains the message ID for the
physical layer message that will be transmitted on the CAN
bus. One page of the ID table is defined as ID field length∗
ID depth(maximum 256), and the data in each page of table
is sorted by priority.

Accept filter: According to the message set that the node
needs to receive, the acceptance code and acceptance mask
registers can be obtained at the same time. IDHCC has four
acceptance code and acceptance mask registers, respectively.
These registers will be written to the can registers module,
and work in the CAN acf module. The receiving nodes are
included in the CAN acf module to decide whether to accept
or discard a received data frame.

B. Data flow in IDH-CAN
To clearly describe the proposed IDH-CAN mechanism, we

describe the data flow in IDH-CAN in Figure 7.
For transmitter link: After the message is transferred to

the CAN controller by reading registers, the priority of the

18 / 35

ID table
ID table

IDH CAN Controller

ID_hopping_table

Hopping

controller
Message’s IDs from

transmint registers

..
.

To transmit buffer

To receive fifo buffer

Bit

Timing

Logic

B
it S

tream
 P

ro
cesso

r

Shift-Register

Baudrate

Prescaler

Sample_Point

Sample_Bit

Sync_Mode

Bit_to_send

Bus_Off

System Clock

Receive_Data

Transmit_Data

Scaled_Clock(Tq)

Control

Status

Received_Data_Bit

Control

Send_Message

Received_Message

Configuration(BRP)

Configuration(TSEG1,TSEG2,SJW)

Next_Data_Bit

...

ACK bit
1

11

11

Message’s IDs from

receive registers

11

11

app_id_prio

rity_table

Accept

filter

Message

Counter

8

8
System bus

1 1

 rest_bitclk

11

11

11

4

ID hopping

block

1

Fig. 6. Structure diagram of the ID hopping CAN controller.

message can be obtained by looking up the priority order
of app id priority table, which be written to IDHCC in
design phase too. The App IDs can then be converted to
Phy IDs by looking up the ID hopping table for sending
(synchronized by the message counter). Therefore, the ID
transmission on the physical layer actually will be different.

For receiver link: When a new message is transported on
the CAN bus, if the ID of the message passes the accepting
filter, then message will be processed by the ECU. First, the
relative priority of the message can be obtained by looking up
the ID hopping table based on the Phy ID and message
counter, and the App IDs can be obtained by looking up the
application IDs table with the relative priority. Second, the ID
for the application software layer is obtained.

C. Waveform simulation

Before deploying to the FPGA platform, we design a test
bench to verify the correctness of the IDHCC design. The
environment is ModelSim ALTERA STARTER EDITION
10.1d, and the test includes sending and receiving tests for the
IDHCC. The first step of this test bench is to write IDs for
both app id priority table and ID hopping table in the
IDHCC. The simulation test can be divided into the following
aspects.

In the sending state, as shown in Figure 8, the ID that
needs to be sent is 00000000000. However, the transmitted
ID waveform on the bus is converted to 10101010100 as the

Physical_ID

Priority

order

Application_ID

Application IDs

table based priority

Application IDs

table based priority

ID hopping table

ID hopping table

Priority

order

Input: priority_order

Output:physical_id for

send out

Input: Application_ID from

application software

Output: priority_order

Input:priority_order of

receiver message

Output:Application_id for

application software

Input: physical_id from

receiver fifo

Output:priority_order
 Accept

Filter

Fig. 7. Data flow in IDH-CAN.

The application layer's ID is written to

the register

Fig. 8. The message ID is written to the register.

ID field ID field
Ack signal Ack signal

TX

Fig. 9. The waveform on the physical CAN bus.

waveform shows in Figure 9. If we keep sending the same ID,
then the waveform will be different. Hopping synchronization
occurs based on the ACK signal.

The simulation test shows that the IDHCC can work cor-
rectly and that the IDs transmitted on the physical layer
change according to the message counter (trigger via the ACK
signal).

VI. EVALUATION

The results in Section V-C show that IDH-CAN can work
in the hopping module correctly. To evaluate the effectiveness
of our solution, we evaluate IDH-CAN from three aspects,
namely resource consumption, performance, and security ef-
fectiveness. Several numerical examples are presented to con-
firm the proposed mechanism.

A. Resource consumption

Given that the automotive electronics design is cost sen-
sitive, the new IDHCC must minimize the occupation of
hardware resources. As described in Table I, the comparison
with normal CAN controller [23] shows that IDH-CAN has
improved security with slightly increased hardware resources.

B. Performance analysis

The development platform employed in this study is Altera
DE0-Nano with EP4CE22F17C6. The experimental results on

19 / 35

TABLE I
COMPARISON OF RESOURCE CONSUMPTION

CAN controller ID hopping CAN controller
Device EP4CE22F17C6 EP4CE22F17C6

Total logic elements 2,313 / 22,320 (10 %) 2,362 / 22,320 (11 %)

Total combinational functions 1,927 / 22,320 (9 %) 1,996 / 22,320 (9 %)

Dedicated logic registers 1,175 / 22,320 (5 %) 1,175 / 22,320 (5 %)

Total pins 19 / 154 (12 %) 30 / 154 (19 %)

TABLE II
PERFORMANCE COMPARISON OF CAN SECURITY ENHANCEMENT METHODS

MAC[12] [13] CAN+ [15][24][11] [14] IA-CAN[16] ID hopping[17] Proposed
Computational complexity High Middle Low Low Low

Time delay Middle High No Low No

Play load consumption High No need Middle No need No need

Additional messages No need Need No need Need One

Schedulability analysis Easy Complex Complex Complex Easy

the FPGA platform show that the designed controller can
always reach 25 MHz.

Communication response time: Given that synchroniza-
tion is achieved using the message counter, the start message is
fixed to the highest priority and fixed message counter cycles.
The experiments show that IDHCC can work at 1 Mbps. The
number of instructions in one cycle required for the IDHCC
to complete the hopping operation is 3 step. Theoretically, the
time required for the IDHCC to complete the hopping process
is 240 µs, which is less than Cm 0.136 ms as described in
Section IV-B.

Schedulability analysis: IDH-CAN does not need addi-
tional payloads to achieve ID hopping techniques, and the
schedulability analysis model of CAN messages is guaranteed
because of the fixed priority order and the constant message
time model. Therefore, IDH-CAN is compatible with the
existing designs in the vehicle environment.

C. Success rates of attacks

We analyze the security performance of IDH-CAN from
three aspects, namely, targeted DoS attacks, replay attacks,
and reverse engineering.

Targeted DoS attacks. Targeted DoS attack which uses
special messages for targeted ECU. Our method can against
this kind of DoS attacks by ID hopping mechanism. For a
physical attack, when the ID jump occurs, the ID in the
previous page of ID hopping table will become illegal in
the next page of ID hopping table.

Replay attacks. In a system equipped with IDHCC,
N pages denotes the pages of the ID hopping table, while
Nnum App IDs denotes the number of IDs in application
layer. The success rate of the replay attacks against the IDH-
CAN system can be computed as

1

Nnum Phy IDs
(5)

where Nnum Phy IDs is the total number of IDs
in the physical CAN bus with diversity of Phy IDs.
For normal CAN, Nnum Phy IDs is equal to
Nnum App IDs, but in IDH-CAN, Nnum Phy IDs
is equal to Nnum App IDs ∗N pages. Therefore, the
theoretical success rate of replay attacks against IDH-CAN is
computed as

1

Nnum App IDs ∗N pages
(6)

Obviously, this probability is less than that recorded in
normal CAN (which is 1

Nnum App IDs). In IDH-CAN, the
diversity and non-formatting of the messages transmitted on
the network significantly increase the probability for reverse
engineering and violent attacks. An attacker cannot determine
the priority order of the message.

Reverse engineering: Data collection analysis is often
the first step in the attack process[14]. In [22], the authors
find that the CAN messages collectively have low entropy
with an average of 11.436 bits. Moreover, in-vehicle ECUs
usually use IDs ranging form 0x000 to 0x5FF while the
automotive diagnostic tool uses IDs ranging from 0x700 to
0x7FF [14]. In summary, the ID structure of the existing CAN
protocol is fixed, has a poor diversity, and is prone to reverse
engineering. To compare diversity of IDs between normal
CAN, this study provides the entropy analysis of IDH-CAN
with SAE Benchmark based message set, comprised of both
time-triggered and event-triggered messages. Figure 10 shows
the result of comparison between IDH-CAN, normal CAN and
proposal in [17]. The results of the entropy analysis showed
that IDH-CAN has bigger entropy in each number of message
set. Therefore, IDHCC can play a role in preventing reverse
engineering.

Table II presents some of the advantages of IDHCC: first,
compared with MAC, IDH-CAN does not need to consume
data-field and additional messages and does not take up

20 / 35

Entropy analysis

100 150 200 250

Number of messages

0

2

4

6

8

10

12

V
a

lu
e

 o
f

e
n

tr
o

p
y

Nomoral CAN

ID-hoping in [17]

Proposed

Fig. 10. Entropy comparison.

additional computing resources and time, although IDH-CAN
controller is needed. Second, compared with CAN +, IDH-
CAN only need one additional message for synchronization
of message counters, which means higher effective bandwidth
and utilization. Third, compared with IA-CAN, our proposed
method is easy to achieve the schedulability (WCRT) and
randomization of CAN messages. Fourth, compared with the
ID hopping mentioned in [17], the IDs in IDH-CAN are more
diverse and have less processing time in software.

VII. CONCLUSION

In this paper, a non-ISO IDH-CAN controller IP core was
designed and implemented based on the traditional controller
standard. Therefore, this controller can be used with different
MCUs and in the FPGA platform. Moreover, if ECUs are
equipped with our IDH-CAN controller, then the schedula-
bility analysis model for CAN messages is applicable. This
unchanged model is especially important for security-critical
systems (such as the automotive domain). In addition, we fully
consider the compatibility of this controller with the previous
designs and the upper layer protocols and software.

This research contributes to the literature by guaranteeing
that the CAN bus can defend the system from anti-engineering,
sniffing, targeted DoS attacks and replay of messages attacks
without requiring much bandwidth resources, additional mes-
sages and long calculation time. A future research direction
would be how to improve the security performance of IDHCC.
For example, the hopping rule in IHDCC can be setting by
using a secret key to defend the application layer from attacks
at same time.

ACKNOWLEDGMENT

This work was partially funded by China Scholarship
Council under Grant Number 201606130063 and the National
Natural Science Foundation of China under Grant Number
61672217.

REFERENCES

[1] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces.”
in USENIX Security Symposium. San Francisco, 2011.

[2] J. Petit and S. E. Shladover, “Potential cyberattacks on automated
vehicles,” IEEE Transactions on Intelligent Transportation Systems,
vol. 16, no. 2, pp. 546–556, 2015.

[3] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., “Experimental
security analysis of a modern automobile,” in Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 2010, pp. 447–462.

[4] “Road vehicles-functional safety, iso 26262,” 2011.
[5] B. Zheng, H. Liang, Q. Zhu, H. Yu, and C.-W. Lin, “Next generation

automotive architecture modeling and exploration for autonomous driv-
ing,” in VLSI (ISVLSI), 2016 IEEE Computer Society Annual Symposium
on. IEEE, 2016, pp. 53–58.

[6] C. Schmittner, Z. Ma, C. Reyes, O. Dillinger, and P. Puschner, “Us-
ing sae j3061 for automotive security requirement engineering,” in
International Conference on Computer Safety, Reliability, and Security.
Springer, 2016, pp. 157–170.

[7] C. Bernardeschi, G. Dini, and G. Del Vigna, “Security modeling and
automatic code generation in autosar,” 2016.

[8] M. J. Dworkin, “Recommendation for block cipher modes of operation:
The cmac mode for authentication,” Special Publication (NIST SP)-800-
38B, 2016.

[9] N. F. Pub, “197: Advanced encryption standard (aes),” Federal infor-
mation processing standards publication, vol. 197, no. 441, p. 0311,
2001.

[10] C. Szilagy and P. Koopman, “A flexible approach to embedded network
multicast authentication,” 2008.

[11] A. Hazem and H. Fahmy, “Lcap-a lightweight can authentication proto-
col for securing in-vehicle networks,” in 10th escar Embedded Security
in Cars Conference, Berlin, Germany, vol. 6, 2012.

[12] C.-W. Lin and A. Sangiovanni-Vincentelli, “Cyber-security for the con-
troller area network (can) communication protocol,” in Cyber Security
(CyberSecurity), 2012 International Conference on. IEEE, 2012, pp.
1–7.

[13] D. K. Nilsson, U. E. Larson, and E. Jonsson, “Efficient in-vehicle
delayed data authentication based on compound message authentication
codes,” in Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE
68th. IEEE, 2008, pp. 1–5.

[14] S. Woo, H. J. Jo, and D. H. Lee, “A practical wireless attack on
the connected car and security protocol for in-vehicle can,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp.
993–1006, 2015.

[15] P. Mundhenk, S. Steinhorst, M. Lukasiewycz, S. A. Fahmy, and
S. Chakraborty, “Lightweight authentication for secure automotive net-
works,” in Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition. EDA Consortium, 2015, pp. 285–288.

[16] A. W. Kyusuk Han and K. G.Shin, “Apractical solution to achieve real-
time performance in the automotive network by randomizing frame
identifier.” Embedded Security in Cars (escar) Europe, October 26,
2015.

[17] A. Humayed and B. Luo, “Using id-hopping to defend against targeted
dos on can,” in Proceedings of the 1st International Workshop on Safe
Control of Connected and Autonomous Vehicles. ACM, 2017, pp. 19–
26.

[18] H. Ueda, R. KURACHI, H. TAKADA, T. MIZUTANI, M. INOUE, and
S. HORIHATA, “Security authentication system for in-vehicle network,”
SEI Technical Review, no. 81, 2015.

[19] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in
automotive communication systems,” Proceedings of the IEEE, vol. 93,
no. 6, pp. 1204–1223, 2005.

[20] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area
network (can) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

[21] R. I. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Schedulability
analysis for controller area network (can) with fifo queues priority
queues and gateways,” Real-Time Systems, vol. 49, no. 1, pp. 73–116,
2013.

[22] E. Wang, W. Xu, S. Sastry, S. Liu, and K. Zeng, “Hardware module-
based message authentication in intra-vehicle networks,” in Proceedings
of the 8th International Conference on Cyber-Physical Systems. ACM,
2017, pp. 207–216.

[23] M. Igor, “Can protocol controller,” https://opencores.org/acc,view,igorm,
2009.

[24] A. Van Herrewege, D. Singelee, and I. Verbauwhede, “Canauth-a simple,
backward compatible broadcast authentication protocol for can bus,” in
ECRYPT Workshop on Lightweight Cryptography, vol. 2011, 2011.

21 / 35

A Byzantine Fault-Tolerant Key-Value Store for
Safety-Critical Distributed Real-Time Systems

Malte Appel†∗, Arpan Gujarati∗, and Björn B. Brandenburg∗
∗Max Planck Institute for Software Systems (MPI-SWS), Germany

†Saarland University, Germany

I. MOTIVATION

From modern cars to airplanes to industrial plants, many
applications that must execute in a timely manner are deployed
on distributed systems. In case of safety-critical applications,
like the anti-lock braking system of a car, the underlying sys-
tem must tolerate inadvertent environmentally-induced faults
to guarantee user safety. Since such systems often operate
at high frequencies, fault-induced failures have to be masked
through active replication. Furthermore, before such a system
is deployed, it typically has to be analyzed w.r.t. its runtime,
safety guarantees, etc. This is required for common safety-
certification standards such as the DO-178C standard for
aviation or the ISO 26262 standard for automotive systems.

To ease the development of such systems, our goal is to
design a fault-tolerant middleware on which real-time control
applications can be effortlessly replicated, that respects real-
time and low-latency requirements, and whose reliability can
be analyzed a priori for the purpose of safety certification.

II. MODEL AND ASSUMPTIONS

We assume a distributed system consisting of multiple
networked processing elements (PEs) that hosts one or more
distributed real-time control applications. An application fails
if the control loop output, i.e., its final physical actuation, is
incorrect due to failures in one of the intermediate stages of
the control loop, as explained next.

We consider failures caused by transient soft errors and/or
permanent errors due to environmental conditions (such as
electromagnetic interference (EMI), thermal effects, etc.) and
manufacturing defects. In particular, we assume that failures
are environmentally induced and not malicious.

The aforementioned failure sources may result in program-
visible Byzantine PE failures, i.e., PEs may behave arbitrarily,
resulting in the delivery of incorrect or inconsistent outputs
to other PEs, or in no outputs at all. For example, a PE may
end up sending differing messages during a broadcast to its
neighbors, say, due to two PEs interpreting the same signal
differently owing to a soft error [1], or due to inconsistencies
in the underlying network protocol, as in CAN [2].

In contrast to PEs, the network connecting the distributed
PEs is assumed to be both synchronous and reliable, i.e., mes-
sage delivery times are bounded and message deliveries are
ordered. Any network failures are attributed to PE failures,
e.g., transient network partitions or delayed message trans-
missions are considered as PE omission failures.

We assume that the PEs are reliably synchronized using a
high-precision clock synchronization protocol, such as [3].

III. PROBLEM STATEMENT

Byzantine failures include both value failures, e.g., incorrect
computation or inconsistent message deliveries, and timing
failures, e.g., crashes or message omissions. Value failures
may lead to incorrect system behavior, e.g., when wrong inputs
are delivered to an actuator, it performs an incorrect action.
Crashes of critical components may lead to immediate system
failure. Omission failures may lead to a delay or complete lack
of reaction. Thus, depending on the extent of value failures
and the duration of timing failures, they can have catastrophic
consequences in a safety-critical real-time application.

Existing Byzantine fault tolerance (BFT) protocols (see §IV)
mitigate the effects of Byzantine failures, but focus on sound-
ness while compromising timeliness. A majority of them were
designed primarily for large-scale, predominantly throughput-
oriented distributed systems, and thus these protocols (occa-
sionally) exhibit unpredictable, long execution times unsuit-
able for high-frequency real-time control applications.

This work targets the problem of providing BFT in a
predictable, preferably short, time suitable for applications
with activation frequencies as high as 10 kHz. In particular, an
ideal implementation of a BFT real-time control application
and the underlying distributed system must guarantee the
following correctness properties despite Byzantine failures.
• Validity: If a correct (non-faulty) task of the control appli-

cation receives or reads a value, that value should have been
sent or written by a correct task.

• Freshness: If a correct task of the control application re-
ceives or reads a value, that value should have been sent or
written less than Xms ago, where X is application-specific.

• Agreement: If a correct task has state S at the end of a
control-loop iteration, then all correct replicas of the task
have state S at the end of the control-loop iteration.

• Timely termination: During each control-loop iteration, the
control loop should perform the intended action (the final
plant actuation) before the end of that iteration.

Example domains that have such requirements include control
systems in ships, avionics, air traffic control, etc. [4].

In addition to guaranteeing these correctness properties, any
BFT mechanism added to an otherwise certified application
should also be analyzable. That is, given the peak soft error
rates in different system components, it should be possible

22 / 35

Table I: BFT protocols tolerating f failures

Name Network model Hosts Type
BChain-3 [5] partial synchrony 3f + 1 chain

Zyzzyva [6] partial synchrony 3f + 1 broadcast

PBFT [7] weak synchrony 3f + 1 broadcast

Q/U [8] asynchronous 5f + 1 quorum

HQ [9] asynchronous 3f + 1 quorum

Aliph-Chain [10] asynchronous 3f + 1 quorum/chain/broadcast

Ben-Or et al. [11] synchronous 4f + 1 randomized; quorum

Mostéfaoui et al. [12] asynchronous 3f + 1 randomized; broadcast

AER [13] asynchronous 3f + 1 randomized; quorum

Patra et al. [14] asynchronous 3f + 1 randomized; broadcast

HoneyBadgerBFT [15] asynchronous 3f + 1 randomized; broadcast

to quantify the overall system reliability (e.g., in terms of its
mean time to failure) for safety-certification purposes.

IV. EXISTING BFT PROTOCOLS

Since the Byzantine Generals problem was proposed by
Lamport et al. [16], many BFT protocols have been pro-
posed with the objective of ensuring some (if not all) of the
correctness properties listed in §III. Representative protocols
for different network models and different design types are
summarized in Table I and discussed in brief below.

Broadcast-based BFT protocols always involve all replicas
in the agreement process. The client broadcasts its proposal
to all replicas [17] or to a designated primary replica that
multicasts the proposal to the backups [6, 7]. In contrast,
quorum-based BFT protocols require only a representative
subset of replicas (the quorum) to form an agreement [8, 9].
Both broadcast- and quorum-based BFT protocols achieve
relatively low end-to-end latency, but at the cost of large
bandwidth consumption. It is thus challenging to incorporate
them in distributed real-time systems that often use low-
bandwidth networks for cost-efficiency and predictability.

Chain-based protocols arrange replicas in a chain. Clients
send their value to the head of the chain and receive a
reply only after the message has moved through either a
part of [5] or the complete chain [10]. This provides higher
throughput, but results in higher latency (compared to broad-
cast or quorum-based protocols). Depending on the latency
requirements and the underlying network, such protocols can
be prohibitive for real-time control applications.

The protocols discussed above are deterministic, which
implies that the number of rounds required for agreement is
lower-bounded by f +1 when tolerating up to f failures [18].
To improve upon this performance metric, non-deterministic
or randomized BFT protocols were proposed [19, 20], which
reduce the number of required rounds, but may violate one
of the correctness properties listed in §III with low proba-
bility. For example, in the (1 − ε)-terminating protocol by
Patra et al. [14], a correct task terminates with probability
(1 − ε), and protocols like AER [13] use almost-everywhere
Byzantine agreement where agreement is guaranteed for all but
O(log−1 n) correct tasks. Protocols such as the one proposed
by Patra et al. [14] are favorable if ε is reasonably low and
does not significantly affect the overall system reliability.

None of the protocols discussed above, however, guarantees
freshness and timely termination (as stated in §III). For exam-
ple, in a hard real-time application, if a value satisfying validity
and agreement is delivered to a task after its deadline, it has
nonetheless zero utility. It is thus better to receive a correct
value (or maybe a value that is correct with high probability)
on time, or to not receive it at all. To realize this, the BFT
protocol must be aware of the timeliness requirements of all
values that it handles. Similarly, to ensure freshness, it must
be aware of the application-specific lifetime of each value.

V. PROPOSED SOLUTION

We propose to build a BFT key-value store (KVS) that will
act as a middleware for distributed real-time applications, that
satisfies the correctness properties listed in §III, and that is
analyzable. We first give an overview of the system design,
and then explain the rationale behind our design.

Overview. The KVS provides a write(k,v,t) API for
publishing a value v for key k at time t and a read(k,t)
API for reading the latest published value v (that is published
not earlier than t) for key k (see Listing 1 for an example).
The time parameter t is application-specific and inspired by
the logical execution time paradigm [21, 22]. For a write, it
determines the absolute time at which the write should be pub-
lished, i.e., made visible to subsequent read requests for key k,
and for a read, it determines the freshness requirement of the
returned value, i.e., values published earlier than time t are
not returned. The middleware underlying the read and write
APIs consists of one local data store per PE, which coordinate
using a BFT protocol to tolerate Byzantine failures.

Freshness and timely termination. The time parameter t
in the read and write APIs allows the programmer to convey
application-specific freshness and timeliness requirements to
the KVS. The agreement protocol disseminates any written
value v by time t to enable timely termination of the control
loop, where t must be sufficiently far in the future to allow the
execution of the agreement protocol. For a read request, the
value is served by the local data store. If no fresh value exists
locally, a valid value is requested from other data stores with
a consensus protocol. If still no fresh value exists (i.e., there is
no fresh value in the system), the read returns a default value.
Thus, by using the time parameter t, the KVS guarantees both
freshness and timely termination for the control application.

Validity. The agreement protocol guarantees that a valid value
is stored in every local data store, and read correctly by the
client, if the value or the read operation is not affected by
failures on the client PE. Furthermore, to reduce the likelihood
of invalid reads due to failures on the client side (say, when
the published value in the local data store is corrupted just
before being read), the local data store computes and stores a
checksum for each published value. With this, the KVS has the
option of invoking the consensus protocol to retrieve the value
from other local data stores in case of a checksum mismatch.

Agreement. The agreement property requires that replicas
have a uniform state at the end of every control-loop iteration.

23 / 35

Listing 1 Example PID controller programmed over KVS
1: procedure PERIODICTASKACTIVATION
2: freshness ← timeOfLastActivation()
3: currentPos ← KVS.read(“sensorDataKey”, freshness)
4: error ← KVS.read(“targetPosKey”, freshness) − currentPos
5: integral ← KVS.read(“integralKey”, freshness) + error
6: derivate ← error − KVS.read(“errorKey”, freshness)
7: newPos ← (KVS.read(“kpKey”, freshness) ∗ error) +

(KVS.read(“kiKey”, freshness) ∗ integral) +
(KVS.read(“kdKey”, freshness) ∗ derivative)

8: time ← timeOfNextActivation()
9: KVS.write(“errorKey”, error, time)

10: KVS.write(“integralKey”, integral, time)
11: KVS.write(“controlValueKey”, newPos, time)

The KVS guarantees this by requiring that any stateful values
used by the application are written to and read from the
KVS (as illustrated in Listing 1). Multiple writes for the
same key that should be published at the same time are
resolved transparently by the KVS middleware. Applications
can specify a key-level policy at configuration time, such as
majority voting, averaging, median, etc., that decides how the
KVS processes differing values (say, noisy, but correct, values
published by replicated sensor tasks). As a key benefit, this
approach makes replication effortless for the application de-
veloper, since it suffices to instantiate the application (e.g., the
PID controller code in Listing 1) on an arbitrary number
of hosts for replication, without any changes to the code.
Furthermore, since all application state is persisted in the KVS,
crashed applications or PEs can be trivially restarted.

Analyzability. The proposed design reduces the application
failure domain to the KVS, i.e., failures are attributed to
the KVS implementation and not to the application code.
It abstracts away any BFT mechanisms from the programmer
and decouples it from the application logic, which makes it
easier to reason about and formally model the KVS. In par-
ticular, a layered design consisting of a separate application
layer, KVS layer, clock synchronization layer, networking
layer, etc., enables independent analysis of the worst-case
reliability bounds for each layer while assuming that other
layers are reliable, and then composition of these bounds to
yield an overall system reliability bound.

Coordination protocol. The process of choosing and evalu-
ating an appropriate BFT protocol for the coordination of data
store replicas is still in progress. Since we focus on control
applications, we concentrate on protocol latencies rather than
their throughput. For fail-operational systems, protocols that
completely degrade in performance as soon as failures occur
are unacceptable. We plan to avoid using protocols such as
Zyzzyva [6] that improve performance through speculative
execution at the cost of unpredictable revert actions. However,
a predictable version of such protocols, with manageable
latencies, might be interesting. Clement et al.’s [23] work on
robust BFT, which favors an equal performance in both failure
and non-failure cases over optimizations benefiting only the
failure-free scenario, is particularly interesting in this regard.
Some of the non-deterministic protocols achieve much lower

latencies and thus seem appealing, but they introduce a small
risk of violating the agreement property. If this probability is
reasonably low, randomization might be the favorable solution,
but for the moment, we leave the possible incorporation of
non-deterministic protocols as future work.
Next steps. Once the KVS is designed and implemented, we
will conduct rigorous fault-injection experiments through the
injection of bit flips in arbitrary memory locations (including
the OS kernel), since environmental EMI sources are not
restricted to the specific parts of the memory used by the KVS
process. Finally, we aim to analyze the reliability of the BFT
KVS to derive a safe bound on the mean time to failure of
applications hosted on this platform, given bounds on the peak
rates of soft and permanent errors in all PEs.

REFERENCES

[1] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg, “Byzantine fault
tolerance, from theory to reality,” in SafeComp, 2003.

[2] G. M. Lima and A. Burns, “A consensus protocol for CAN-based
systems,” in RTSS, 2003.

[3] “IEEE standard for a precision clock synchronization protocol for
networked measurement and control systems,” IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), pp. 1–300, July 2008.

[4] D. Locke, Applications and System Characteristics. Boston, MA:
Springer US, 2002, pp. 17–26.

[5] S. Duan, H. Meling, S. Peisert, and H. Zhang, “BChain: Byzantine
replication with high throughput and embedded reconfiguration.” in
OPODIS, 2014.

[6] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative Byzantine fault tolerance,” in SOSP, 2007.

[7] M. Castro, B. Liskov et al., “Practical Byzantine fault tolerance,” in
OSDI, 1999.

[8] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and
J. J. Wylie, “Fault-scalable Byzantine fault-tolerant services,” in SOSP,
2005.

[9] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “HQ
replication: A hybrid quorum protocol for Byzantine fault tolerance,” in
OSDI, 2006.

[10] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The next 700
BFT protocols,” in EuroSys, 2010.

[11] M. Ben-Or, E. Pavlov, and V. Vaikuntanathan, “Byzantine agreement in
the full-information model in O(logn) rounds,” in STOC, 2006.

[12] A. Mostéfaoui, H. Moumen, and M. Raynal, “Signature-free asyn-
chronous binary Byzantine consensus with t < n/3, O(n2) messages,
and O(1) expected time,” JACM, vol. 62, no. 4, p. 31, 2015.

[13] N. Braud-Santoni, R. Guerraoui, and F. Huc, “Fast Byzantine agree-
ment,” in PODC, 2013.

[14] A. Patra, A. Choudhury, and C. P. Rangan, “Asynchronous Byzantine
agreement with optimal resilience,” Distributed Computing, vol. 27,
no. 2, pp. 111–146, 2014.

[15] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of BFT protocols,” in CCS, 2016.

[16] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM TOPLAS, vol. 4, no. 3, pp. 382–401, 1982.

[17] G. Bracha, “Asynchronous Byzantine agreement protocols,” Information
and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[18] M. J. Fischer and N. A. Lynch, “A lower bound for the time to assure
interactive consistency,” Information processing letters, vol. 14, no. 4,
pp. 183–186, 1982.

[19] M. O. Rabin, “Randomized Byzantine generals,” in FOCS, 1983.
[20] M. Ben-Or, “Another advantage of free choice (extended abstract):

Completely asynchronous agreement protocols,” in PODC, 1983.
[21] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Embedded control

systems development with Giotto,” in LCTES, 2001.
[22] C. M. Kirsch and A. Sokolova, “The logical execution time paradigm,”

in Advances in Real-Time Systems. Springer, 2012, pp. 103–120.
[23] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti,

“Making Byzantine fault tolerant systems tolerate Byzantine faults.” in
NSDI, 2009.

24 / 35

Lower-Bounding the MTTF for Systems with (m, k)
Constraints and IID Iteration Failure Probabilities

Arpan Gujarati, Mitra Nasri, and Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS), Germany

{arpanbg, mitra, bbb}@mpi-sws.org

Abstract—We derive a sound lower bound on the mean time to
failure of periodic systems with (m,k) constraints. We assume
that upper bounds on the failure probabilities of each system
iteration, e.g., a job or a runtime activation of a periodic task, or
a single actuation cycle of a control loop, are known and that they
satisfy the IID assumption. Our analysis leverages prior work on
the well-studied a-within-consecutive-b-out-of-c:F system model.

I. INTRODUCTION

For safety certification, the reliability of a safety-critical
system must be carefully analyzed before deployment. Typ-
ically, this is done using generic analyses such as fault tree
analysis (FTA) [18] and failure mode and effects analysis
(FMEA) [19], or domain-specific analyses (e.g. [5, 16]).
The analyzed reliability is reported using metrics such as the
mean time to failure (MTTF) or the failures-in-time (FIT) [20],
or sometimes simply using a failure probability.

Many periodic safety-critical systems are subject to (m, k)
constraints, i.e., at least m iterations out of any k consecutive
iterations must be correct [10]. For example, many real-time
systems can tolerate a few deadline misses [11] and well-
designed, robust control applications remain functional despite
a few missed or incorrect actuations [4], thanks to the underly-
ing physics. However, accurate and sound reliability analysis
of systems with (m, k) constraints is still an open problem.

Prior works focus on the reliability analysis of individual
iterations, e.g., analyzing the probability of a deadline miss
or a faulty message transmission in any iteration, as in [3,
8, 16], and then extrapolate overall reliability guarantees for
the system, e.g., by analyzing the probability of no deadline
misses or no faulty message transmissions. For systems with
(m, k) constraints, this zero-tolerance hard real-time approach
towards reliability analysis results in excessively pessimistic
reliability bounds, and consequently in cost-inefficient designs
that under-utilize system resources.

In this work, we propose a new reliability analysis for
systems with (m, k) constraints. We assume that (an upper
bound on) the failure probability for each iteration is known
in advance and that these iteration failure probabilities satisfy
the IID assumption (i.e., they are identical for each iteration
and are independent of other failed iterations). For instance,
this assumption is satisfied by Broster et al.’s analysis [3]
of the probability of a timely transmission of a Controller
Area Network (CAN) message, or our prior work [8] on the
reliability analysis of replicated CAN messages.

We then leverage existing results on the reliability analysis
of the well-studied a-within-consecutive-b-out-of-c:F system
model [12] to derive the probability that the system violates
its (m, k) constraint for the first time during the nth iteration.
Finally, using these probabilities, we characterize the system
reliability in terms of a lower bound on its MTTF.

This work is part of an ongoing project on reliability
analysis of CAN-based networked control systems (NCS) with
replicated tasks that are characterized using (m, k) constraints.
We are currently developing an analysis to derive IID failure
probabilities for each iteration of a control loop in the NCS,
which, together with the analysis presented in this paper, will
help quantify the overall reliability of the NCS.

II. SYSTEM MODEL

Let PF (for Failure) denote an upper bound on the prob-
ability that a single iteration of the system fails, and let
PS = 1−PF (for Success). We assume that 0 < PF < 1 and
that PF satisfies the IID assumption. Since reliability analyses,
such as the ones in [3, 8], often analyze the worst-case scenario
for any iteration, the resulting iteration failure probabilities
satisfy this assumption.

Let S denote the system being analyzed and T denote its
activation period. S fails as soon as it violates the (m, k)
constraint. That is, it fails during the nth iteration if the nth

iteration fails and it is the (k−m+ 1)th failed iteration in the
last k iterations (thus violating the (m, k) constraint), and if
the (m, k) constraint has not been violated before. This implies
that S cannot fail during the first k −m iterations.

The MTTF of a system is defined as its expected lifetime.
That is, for a system S with an (m, k) constraint, MTTF is the
average time that it takes for S to violate its (m, k) constraint.
It can be computed using the well-known definition MTTF =∫∞

0
t× f(t) dt [12, §2.2], where f(t) denotes the probability

density function (p.d.f.) of S, i.e. the probability that S violates
its (m, k) constraint for the first time at time instant t. The
objective of this paper is to derive a lower bound on the MTTF
of system S, given its iteration failure probability PF .

III. OVERVIEW

The proposed analysis consists of four steps. In Step 1, we
formulate the probability that S violates its (m, k) constraint
for the first time in its nth iteration. In Step 2, we define a
lower bound on this probability, since obtaining an exact value
is computationally hard. In Step 3, we lower-bound the p.d.f.

25 / 35

of S, which is required for computing its MTTF. Finally, in
Step 4, we derive a lower bound on the MTTF using the lower
bound on the p.d.f. Steps 1-4 are explained in detail below.

Step 1. S violates its (m, k) constraint for the first time in
its nth iteration if the following conditions hold:
E1: The nth iteration must fail.
E2: Exactly k−m iterations must fail out of the k− 1 itera-

tions between the (n−k+1)th and the (n−1)th iteration.
E3: Fewer than k − m + 1 iterations fail out of any k

consecutive iterations, among the first n− 1 iterations.
Thus, given E1, E2, and E3, the probability that S violates
its (m, k) constraint for the first time in its nth iteration is
lower-bounded by P (E1)× P (E2)× P (E3).

Step 2. From §II, P (E1) = PF . Summing over all possible
combinations of k−m iteration failures in k − 1 consecutive
iterations, P (E2) =

(
k−1
k−m

)
P

(k−m)
F P

(m−1)
S . But obtaining the

exact value of P (E3) is computationally challenging, since
it requires evaluating all possible combinations of failed and
successful iterations among the first n− 1 iterations.

Thus, we approximate P (E3) using the well-studied a-
within-consecutive-b-out-of-c:F system [12, §11.4], which
consists of c (c ≥ a) linearly ordered components, and which
fails iff at least a (a ≤ b) components fail among any b
consecutive components. That is, in terms of the (m, k) model,
an a-within-consecutive-b-out-of-c:F system fails if it violates
the (b− a + 1, b) constraint. We refer to this system model
as an a/Con/b/c:F system, for brevity. We model E3 as an
a/Con/b/c:F system where a = k − m + 1, b = k, and c =
n−1, and lower-bound P (E3) using a reliability lower bound
RLB(a, b, c) of this system, which we will introduce in §IV.

From the above definitions of P (E1), P (E3), P (E3), if
n > k −m, a lower bound on the probability that S violates
its (m, k) constraint for the first time during its nth iteration is:

gLB(n) =

(
k − 1

k −m

)
P

(k−m+1)
F P

(m−1)
S

× RLB (k −m + 1, k, n− 1) . (1)

Step 3. Recall from §II that T denotes the period of system S.
Accordingly, any time t such that (n − 1)T < t ≤ nT
corresponds to the execution of the nth iteration of S. Thus,
the sum of the p.d.f. of system S at all time instants in
((n− 1)T, nT] is lower bounded by gLB(n), i.e.,∫ nT

(n−1)T

f(t) ≥ gLB(n). (2)

In addition, f(t) = 0, i.e., the system is reliable, for all
t ≤ (k −m)T since by definition of the (m, k) constraint, the
system can fail only after k −m iterations.

Step 4. A lower bound on the MTTF is derived using the ex-
pression MTTF =

∫∞
0

t× f(t) dt and Eq. 2. However, since
gLB(n) in Eq. 2 is defined in terms of RLB(k−m+1, k, n−1),
a recursive expression with complex definitions of its subprob-
lems (see §IV), symbolic integration to lower bound the MTTF
is infeasible, even with tools such as Mathematica [1].

Instead, we propose a numeric, but sound approach to lower-
bound the MTTF that relies on computing the value of gLB(n)
at finitely many data points (see §V).

IV. THE a/CON/b/c:F SYSTEM MODEL

We assume that the system consists of IID components.1 We
first define a lower bound on the reliability of an a/Con/b/c:F
system, i.e., a lower bound on the probability that the system
does not fail, using prior results and then prove that this lower
bound decreases with increasing c if certain conditions hold.

A. Reliability of an a/Con/b/c:F system

Let R(a, b, c) denote the exact reliability of an a/Con/b/c:F
system. A brute-force approach to compute R(a, b, c) requires
enumerating all combinations of failed/not-failed components,
selecting the combinations for which the system does not
fail, and then adding the event probabilities for these reliable
combinations. However, since the number of combinations
that need to be checked are exponential in c, the brute-force
approach is infeasible, particularly since c can easily exceed
1050 (see §VI for details).

We instead use the results of Sfakianakis et al. [17] to
derive a lower bound on R(a, b, c), denoted RLB(a, b, c), for
large values of c. Sfakianakis et al.’s analysis breaks the
problem into smaller subproblems for which exact analyses
are available. Their analysis, as well as the exact analyses for
different types of subproblems, are explained in detail in [12].

Table I summarizes the relevant results in [12] for different
values of a, b, and c. Cases 1 and 2 are trivial: if a = 0,
the system is always unreliable, and if a = 1, the system is
reliable only if none of the c components fail. Cases 3, 5, 6,
and 7 correspond to special cases where c is small (less than
or equal to either 2b or 4b) and for which exact reliabilities can
be computed. Cases 4 and 8 correspond to large, unbounded
values of c and are resolved using Sfakianakis et al.’s recursive
analysis. A generic lower bound RLB(a, b, c) is defined by
combining all of these cases.

B. RLB(a, b, c) decreases with increasing c

The MTTF analysis in §V depends on the property that
RLB(a, b, c) decreases with increasing c. This property triv-
ially holds for cases a = 0 and a = 1, as seen from the
definitions of R1(a, b, c) and R2(a, b, c) in Table I. However,
proving the property for cases a = 2 and a > 2 is non-trivial.
We discuss the more general case a > 2 below. Case a = 2 is
not discussed due to space constraints, but is handled similarly.

Notice that case a > 2 corresponds to multiple cases (5-8)
in Table I. In fact, because of the recursive definitions for
some of these cases, case a > 2 actually depends on the
remaining cases as well, which makes it hard to prove that
RLB(a, b, c) decreases with increasing c. Instead, we prove
a weaker property: we show that if RLB(a, b, c) decreases
with increasing c for small values of c (i.e., for c ≤ 2b), then

1We use the terms iteration and component interchangeably. We use the
term component in this section since it is consistent with the terminology
used in the existing literature on the a/Con/b/c:F model.

26 / 35

Case Definition Type Source
1 a = 0 R1(a, b, c) = 0 Exact –
2 a = 1 R2(a, b, c) = P cS Exact –

3 a = 2 ∧ c ≤ 4b R3(a, b, c) =
∑b c+b−1

b c
i=0

(
c−(i−1)(b−1)

i

)
P iFP

c−i
S Exact [12, §11.4.1]

(Eqs. 11.9 and 11.10)
4 a = 2 ∧ c > 4b R4(a, b, c) = R3(a, b, b + t− 1)(R3(a, b, b + 3))u

where t = (c− b + 1) mod 4 and u =
⌊
c−b+1

4

⌋ LB [12, §11.4.1] (Eq. 11.16)

5 a > 2 ∧ c ≤ 2b ∧
a = b

R5(a, b, c) =

{
1 0 ≤ c < a

1− P aF − (c− k)P aFPS a ≤ c ≤ 2a
Exact [12, §9.1.1]

(Eqs. 9.2, 9.9, and 9.20)
6 a > 2 ∧ c ≤ 2b ∧

a 6= b ∧ c ≤ b
R6(a, b, c) =

∑c
i=c−a+1

(
c
i

)
P iSP

c−i
F Exact [12, §7.1.1] (Eq. 7.2)

7 a > 2 ∧ c ≤ 2b ∧
a 6= b ∧ c > b

R7(a, b, c) =
∑a−1
i=0

(
b−s
i

)
P iFP

b−s−i
S M(a′, s, 2s)

where s = c− b and a′ = a− i,

and M(a′, s, 2s) =

1 a′ > s

R2(a′, s, 2s) a′ = 1

R3(a′, s, 2s) a′ = 2

R5(a′, s, 2s) a′ > 2 ∧ a′ = s

R7(a′, s, 2s) a′ > 2 ∧ a′ 6= s

Exact [12, §11.4.1] (Eq. 11.14)

8 a > 2 ∧ c > 2b R8(a, b, c) = Rφ(a, b, b + t− 1)(Rφ(a, b, b + 3))u

where t = (c− b + 1) mod 4 and u =
⌊
c−b+1

4

⌋
,

and Rφ(a, b, c) =

R5(a, b, c) a = b

R6(a, b, c) a 6= b ∧ a ≤ b

R7(a, b, c) a 6= b ∧ a > b

LB [12, §11.4.1] (Eq. 11.16)

TABLE I. Type indicates whether the reliability definition for that respective case is an exact value or a lower bound.

RLB(a, b, c) also decreases with increasing c for larger values
of c (i.e., for c > 2b). Since b is typically relatively small,
i.e., b = k (recall Step 2 from §III), the if condition can be
easily checked for specific values of a, b, c and p through
exhaustive enumeration.

Lemma 1. For c ≥ a and a > 2, if RLB(a, b, c) is monotoni-
cally decreasing for c ∈ {a, . . . , 2b + 1}, then RLB(a, b, c) is
also monotonically decreasing for c ≥ 2b + 1, i.e.,

if ∀c ≤ 2b : RLB(a, b, c) ≥ RLB(a, b, c + 1),

then ∀c > 2b : RLB(a, b, c) ≥ RLB(a, b, c + 1). (3)

Proof. The proof has three steps. In the first step, we simplify
the if condition in Eq. 3 for the case c < 2b; and then in
the second and the third step, we use it to prove the then
condition in Eq. 3 for cases (c− b + 1) mod 4 = 3 and (c−
b + 1) mod 4 < 3, respectively.

Step 1 [c < 2b]. Since a > 2 and c < 2b imply that c +
1 ≤ 2b, the if condition in Eq. 3 can be simplified using the
definition of Rφ(a, b, c) from Case 8 in Table I as follows.

RLB(a, b, c) ≥ RLB(a, b, c + 1)

≡ Rφ(a, b, c) ≥ Rφ(a, b, c + 1).

Step 2 [c > 2b and (c− b+ 1) mod 4 = 3].

RLB(a, b, c)

RLB(a, b, c + 1)

{since a > 2 and c > 2b, both terms RLB(a, b, c) and
RLB(a, b, c + 1) are resolved using case 8 in Table I; thus,
from R8(a, b, c)’s definition, and letting x = c− b + 1}

=
Rφ(a, b, b + (x mod 4)− 1)(Rφ(a, b, b + 3))b

x
4 c

Rφ(a, b, b + ((x + 1) mod 4)− 1)(Rφ(a, b, b + 3))b
x+1
4 c

{since x mod 4 = 3 implies (x + 1) mod 4 = 0}

=
Rφ(a, b, b + 2)(Rφ(a, b, b + 3))b

x
4 c

Rφ(a, b, b− 1)(Rφ(a, b, b + 3))b
x+1
4 c

{since x mod 4 = 3 implies
⌊
x+1

4

⌋
=
⌊
x
4

⌋
+ 1}

=
Rφ(a, b, b + 2)(Rφ(a, b, b + 3))b

x
4 c

Rφ(a, b, b− 1)(Rφ(a, b, b + 3))b
x
4 c+1

{dividing numerator and denominator by (Rφ(a, b, b+3))b
x
4 c}

=
Rφ(a, b, b + 2)

Rφ(a, b, b− 1)R(a, b, b + 3)

{since Rφ(a, b, b− 1) ≤ 1 (being a probability)}

≥ Rφ(a, b, b + 2)

Rφ(a, b, b + 3)

27 / 35

{since 2 < a ≤ b =⇒ 2 < b =⇒ b + 2 < 2b; from
the if condition in Eq. 3 and from Step 1, Rφ(a, b, b + 2) ≥
Rφ(a, b, b + 3)}

≥ 1.

Step 3 [c > 2b and (c− b+ 1) mod 4 < 3].

RLB(a, b, c)

RLB(a, b, c + 1)

{since a > 2 and c > 2b, both terms RLB(a, b, c) and
RLB(a, b, c + 1) are resolved using case 8 in Table I; thus,
from R8(a, b, c)’s definition, and letting x = c− b + 1}

=
Rφ(a, b, b + (x mod 4)− 1)(Rφ(a, b, b + 3))b

x
4 c

Rφ(a, b, b + ((x + 1) mod 4)− 1)(Rφ(a, b, b + 3))b
x+1
4 c

{since x mod 4 < 3 implies
⌊
x+1

4

⌋
=
⌊
x
4

⌋
}

=
Rφ(a, b, b + (x mod 4)− 1)(Rφ(a, b, b + 3))b

x
4 c

Rφ(a, b, b + ((x + 1) mod 4)− 1)(Rφ(a, b, b + 3))b
x
4 c

{dividing numerator and denominator by (R(a, b, b+ 3))b
x
4 c}

=
Rφ(a, b, b + (x mod 4)− 1)

Rφ(a, b, b + ((x + 1) mod 4)− 1)

{since x mod 4 < 3 implies (x + 1) mod 4 = 1 + x mod 4}

=
Rφ(a, b, b + (x mod 4)− 1)

Rφ(a, b, b + (x mod 4))

{since x mod 4 < 3 =⇒ b + (x mod 4) − 1 < b + 2,
and since 2 < k ≤ b =⇒ 2 < b =⇒ b + 2 < 2b, we
have b + (x mod 4) − 1 < 2b; thus, from the if condition
in Eq. 3 and from Step 1, Rφ(a, b, b + (x mod 4) − 1) ≥
Rφ(a, b, b + (x mod 4))}

≥ 1.

In the next section, while describing the proposed MTTF
analysis, we assume that RLB(a, b, c) decreases with increas-
ing c. When applying the proposed analysis (e.g., in §VI), for
every use of RLB(a, b, c), we check that the if condition in
Lemma 1 holds in order to justify this assumption.

V. MTTF ANALYSIS

Recall the definition of gLB(n) from §III (Eq. 1). Since
RLB(a, b, c) decreases with increasing c and since gLB(n) is
defined in terms of RLB(k −m + 1, k, n − 1), gLB(n) also
decreases with increasing n.

Assume that the value of the function gLB(n) is known
(i.e., computed) at finitely many data points d0, d1, d2, . . . ,
dD, such that each di ∈ N and k − m + 1 = d0 < d1 <
d2 < . . . < dD. Using time instants d0T , d1T , d2T , . . . , dDT
corresponding to the start time of iterations d0, d1, d2, . . . , dD,
and the property that gLB(n) is decreasing with increasing n,
we derive a lower bound on the MTTF as follows.

Lemma 2.

MTTF ≥
D−1∑
i=0

(
diT × gLB(di+1)× (di+1 − di)

)
(4)

Proof.

MTTF =

∫ ∞
0

t× f(t) dt

{splitting (0,∞) into a finite number of subintervals (0, d0T],
(d0T, d1T], . . . , (dD−1T, dDT], and (dDT, ∞); and drop-
ping the integrals for subintervals (0, d0T] and (dDT, ∞)
since we are interested in lower-bounding the MTTF}

≥
D−1∑
i=0

∫ di+1T

diT

t× f(t) dt

{since for all t ∈ (diT, di+1T], t ≥ diT}

≥
D−1∑
i=0

(
diT ×

∫ di+1T

diT

f(t) dt

)
{splitting each subinterval (diT, di+1T] into multiple subin-
tervals (diT, (di + 1)T], ((di + 1)T, (di + 2)T], . . . ,
((di+1 − 1)T, (di+1)T], each of length T}

=
D−1∑
i=0

diT ×

di+1−di−1∑
j=0

∫ (di+j+1)T

(di+j)T

f(t) dt

{since

∫ (di+j+1)T

(di+j)T
f(t) dt ≥ gLB(di + j + 1) (from Eq. 2)}

≥
D−1∑
i=0

diT ×

di+1−di−1∑
j=0

gLB(di + j + 1)

{since gLB(n) is decreasing with increasing n, for each integer
j in the interval [0, di+1−di−1], gLB(di+j+1) ≥ gLB(di+
di+1 − di − 1 + 1) = gLB(di+1)}

≥
D−1∑
i=0

diT ×

di+1−di−1∑
j=0

gLB(di+1)

{simplifying the innermost summation}

=
D−1∑
i=0

(
diT × gLB(di+1)× (di+1 − di)

)
Let MTTFLB denote the lower bound derived in Lemma 2.

If D � dD, MTTFLB can be computed quickly. If the
individual data points d0, d1, d2, . . . , dD are appropriately
chosen, then the computed MTTFLB is sufficiently close to
the exact MTTF. We revisit the choice of data poitns in §VI.

Next, we discuss how to estimate the MTTF using simula-
tions. We use a biased coin toss experiment, where the biased
coin comes up with heads with probability PS , and tails with
probability PF = 1−PS . Tails denotes that the system iteration
is incorrect, and heads denotes that the system iteration is
correct. In each trial, the coin toss is repeated until tails is

28 / 35

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Iteration number (normal scale) 1e55

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

g L
B
(n

)
(n

o
rm

a
l
sc

a
le

)

1e 55

gLB(n)

(m,k)=(3,10), PF=10−7 , T=10 ms

(a) MTTFLB = 2.34× 1055 ms

100 105 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060

Iteration number (log scale)

10-29810-27410-25010-22610-20210-17810-15410-13010-10610-8210-5810-3410-10

g L
B
(n

)
(l

o
g
 s

ca
le

)

gLB(n)

(m,k)=(3,10), PF=10−7 , T=10 ms

(b) Same as (a), but with log-scale axes

Fig. 1: (a) gLB(t) for m = 3, k = 10, and PF = 10−7, where D = 5050 and dD = 9.90 × 1057. (b) gLB(t) for the same
parameters, except that both the x- and y-axes are log-scale.

encountered k−m+1 times among the last k consecutive coin
tosses. If Ω denotes the total number of trials and ωi denotes
the number of coin tosses during the ith trial, averaging ωi over
Ω trials, i.e., ω̂ = (

∑Ω
i=1 ωi)/Ω, gives the expected number

of iterations required to violate the (m, k) constraint. Using
ω̂, the MTTF is estimated as MTTFsim = ω̂ × T .
MTTFsim cannot be used to safely lower-bound S’s

reliability because it may over-approximate the reliability.
However, it is a useful baseline for evaluating MTTFLB . By
comparing MTTFLB with MTTFsim, we determine how
much accuracy we loose by sampling D data points when
deriving MTTFLB .

VI. EVALUATION

The objective of this section is twofold. First, we discuss
the method used to choose the data points d0, d1, d2, . . . , dD.
Second, we present results from a comparison of MTTFLB
and MTTFsim for different values of m, k, and PF .

A. Choosing d0, d1, d2, . . . , dD
In Fig. 1(a), we illustrate the function gLB(n) for m =

3, k = 10, and PF = 10−7. As expected based on §IV-B,
gLB(n) decreases with increasing n. Since MTTFLB depends
on gLB(n), the key idea is to ensure that points d0, d1, d2, . . . ,
dD are sufficient to trace the shape of function gLB(n), and
that the magnitude of gLB(n) is negligible beyond n = dD.

The first point d0 was set to (k−m+1), as mentioned in §V.
To compute the last point dD, i.e., the point at which gLB(n)
becomes negligible, we observed the logarithm of function
gLB(n) for n ∈ {1, 101, 102, 103, . . .}. That is, we plotted the
function gLB(n) on a logarithmic scale for both the x- and
y-axes as in Fig. 1(b), and then determined the time instant
at which the curve starts falling rapidly (e.g., dD ≈ 1055

in Fig. 1(b)). The intermediate points d1, d2, . . . , dD−1 were
chosen such that the step size di+1−di between any two con-
secutive points di and di+1 (i) is small enough to closely track
the function gLB(n), and (ii) yet still proportional to the order
of magnitude of di, to avoid evaluating an exponential number
of points. For example, while generating Fig. 1, the step size
was 1 for n ∈ (10, 100] and 1052 for n ∈ (1053, 1054].

B. MTTFLB versus MTTFsim

To compare MTTFLB and MTTFsim, we chose specific
parameters that ensure that the simulation completes within
reasonable time. In particular, we avoided parameters for
which MTTFLB was very high (typically, configurations
with a very small PF), since the number of rounds in each
simulation trial for such parameters would likely be very
high as well. In Fig. 3, we illustrate the results for each
PF ∈ {10−1, 10−2, 10−3, 10−4}, k ∈ {5, 7, 10}, and m such
that k −m + 1 = 3, i.e., m ∈ {3, 5, 8} (respectively).

The simulations were run on a 16-core Intel Xeon E5-
2667 v2 machine. For each PF ∈ {10−1, 10−2, 10−3, 10−4},
we ran 640, 000, 64, 000, 6, 400, and 640 simulation trials,
respectively. To ensure that the number of trials for each sim-
ulation was sufficient, we also computed the 99% confidence
interval for each MTTFsim (shown as error bars in Fig. 3).
In general, the smaller the PF , the higher was the time to
finish a single simulation trial. The average times required
to complete a single simulation trial and the analytical lower
bound MTTFLB for different values of PF are illustrated in
Fig. 2 below. While the former grows exponentially in log PF ,
the latter grows linearly in log PF .

10−1 10−2 10−3 10−4 10−5

Iteration failure probability PF

10-3
10-2
10-1
100
101
102
103
104
105
106
107

T
im

e
 (
m
s)

Avg. time for a single simulation trial

Avg. time to compute MTTFLB

Fig. 2

We draw the following conclusions from the experiments.
(1) For each configuration, MTTFLB and MTTFsim are
roughly of the same order of magnitude, which indicates that
the proposed method is sufficiently accurate. Note that while
evaluating system reliability, the order of magnitude of the

29 / 35

3/5/10−1 3/5/10−2 3/5/10−3 3/5/10−4 5/7/10−1 5/7/10−2 5/7/10−3 5/7/10−4 8/10/10−1 8/10/10−2 8/10/10−3 8/10/10−4

Configurations (m/k/PF)

102
103
104
105
106
107
108
109

1010
1011
1012
1013
1014

T
im

e
 (
m
s)

MTTFLB MTTFsim

Fig. 3: The period of the system was T = 10ms. For MTTFsim, the 99% confidence intervals are shown as error bars.

reliability metric (in this case, MTTF) is typically more impor-
tant than minor differences in absolute value. (2) MTTFLB is
always less than MTTFsim. This was expected since we use
a lower bound on the p.d.f.; MTTFLB is hence also a lower
bound on the exact MTTF. (3) MTTFLB can be computed
significantly faster than MTTFsim for low failure probabili-
ties, and scales to parameters yielding very high MTTFs.

Overall, the experiments show that the proposed analysis
provides a fast method to compute a safe bound on the MTTF
of system with (m, k) constraints. The analytical results are
comparable to the simulation results, but unlike simulation,
they are provably sound and scalable.

VII. CONCLUSION

We have proposed an analysis to derive a safe lower bound
on the MTTF of a system with (m, k) constraints. MTTF is
one of the standard metrics for measuring system reliability.
While closed-form MTTF analyses can be derived for well-
known distributions and simple system models [12, Ch. 4], the
MTTF analysis for complex systems subject to different types
of failures is often difficult, requiring non-trivial techniques
(e.g., [9, 13–15]). To the best of our knowledge, for systems
with (m, k) constraints, or for the a/Con/b/c:F system model
used in this paper, there exists no prior work that safely lower-
bounds the system MTTF. Recent works by Eryilmaz et al. [7]
and Eryilmaz and Kan [6] derive approximate MTTFs.

As mentioned before, we plan to use the presented MTTF
analysis to quantify the overall reliability of a CAN-based
NCS with replicated tasks that are characterized using (m, k)
constraints, in the presence of environmentally-induced tran-
sient failures. We are currently developing an analysis to derive
IID failure probabilities for each iteration of a control loop of
the NCS. The IID property is guaranteed by the fact that we
consider worst-case scenarios w.r.t. the occurrence of faults
and interference, and since the iteration failure probability
is obtained independently of whether earlier iterations failed,
which justifies the IID assumption made in this work.

As future work, to obtain a more general analysis, we will
consider systems with multiple (m, k) constraints (e.g., sep-
arate constraints for delayed and incorrect messages, or for
modeling short-term and long-term behavior) and systems
with different flavors of (m, k) constraints (e.g., out of any
k consecutive iterations, less than m iterations may fail) [2].

REFERENCES

[1] “Wolfram Mathematica: Modern Technical Computing,” available at
https://www.wolfram.com/mathematica/.

[2] G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,”
IEEE transactions on Computers, vol. 50, no. 4, pp. 308–321, 2001.

[3] I. Broster, A. Burns, and G. Rodriguez-Navas, “Timing analysis of
real-time communication under electromagnetic interference,” Real-Time
Systems, vol. 30, no. 1-2, pp. 55–81, 2005.

[4] K.-H. Chen, B. Bönninghoff, J.-J. Chen, and P. Marwedel, “Compensate
or ignore? meeting control robustness requirements through adaptive
soft-error handling,” in ACM SIGPLAN Notices, vol. 51, no. 5. ACM,
2016, pp. 82–91.

[5] J. B. Dugan and R. Van Buren, “Reliability evaluation of fly-by-wire
computer systems,” Journal of Systems and software, vol. 25, no. 1, pp.
109–120, 1994.

[6] S. Eryilmaz and C. Kan, “Dynamic reliability evaluation of consecutive-
k-within-m-out-of-n:F system,” Communications in Statistics-Simulation
and Computation R©, vol. 40, no. 1, pp. 58–71, 2010.

[7] S. Eryilmaz, C. Kan, and F. Akici, “Consecutive k-within-m-out-of-
n:F system with exchangeable components,” Naval Research Logistics
(NRL), vol. 56, no. 6, pp. 503–510, 2009.

[8] A. Gujarati and B. Brandenburg, “When is CAN the weakest link? a
bound on failures-in-time in CAN-based real-time systems,” in RTSS.
IEEE, 2015, pp. 249–260.

[9] P. Gupta and M. Sharma, “Reliability and MTTF evaluation of a two
duplex-unit standby system with two types of repair,” Microelectronics
Reliability, vol. 33, no. 3, pp. 291–295, 1993.

[10] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment
technique for streams with (m, k)-firm deadlines,” IEEE transactions
on Computers, vol. 44, no. 12, pp. 1443–1451, 1995.

[11] F. Kluge, M. Neuerburg, and T. Ungerer, “Utility-based scheduling of
(m, k)-firm real-time task sets.” in ARCS, 2015, pp. 201–211.

[12] W. Kuo and M. J. Zuo, Optimal reliability modeling: principles and
applications. John Wiley & Sons, 2003.

[13] D. Pandey and M. Jacob, “Cost analysis, availability and MTTF of a
three state standby complex system under common cause and human
failures,” Microelectronics Reliability, vol. 35, no. 1, pp. 91–95, 1995.

[14] H. Pham, A. Suprasad, and R. Misra, “Reliability and MTTF prediction
of k-out-of-n complex systems with components subjected to multiple
stages of degradation,” International Journal of Systems Science, vol. 27,
no. 10, pp. 995–1000, 1996.

[15] M. Ram and S. Singh, “Availability, MTTF and cost analysis of
complex system under preemptive-repeat repair discipline using gumbel-
hougaard family copula,” International Journal of Quality & Reliability
Management, vol. 27, no. 5, pp. 576–595, 2010.

[16] M. Sebastian and R. Ernst, “Reliability analysis of single bus communi-
cation with real-time requirements,” in PRDC. IEEE, 2009, pp. 3–10.

[17] M. Sfakianakis, S. Kounias, and A. Hillaris, “Reliability of a consecutive
k-out-of-r-from-n:F system,” IEEE Transactions on Reliability, vol. 41,
no. 3, pp. 442–447, 1992.

[18] M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J. Minarick, and
J. Railsback, “Fault tree handbook with aerospace applications,” 2002.

[19] D. H. Stamatis, Failure mode and effect analysis: FMEA from theory to
execution. ASQ Quality Press, 2003.

[20] S. Stanley, “MTBF, MTTR, MTTF & FIT explanation of terms,” IMC
Networks, 2011.

30 / 35

SEEDSTRAINER: An Approach to Improve the Hit
Ratio of Malicious Candidate URLs

Yasuyuki Tanaka
Institute of Information Security (IISEC)

2-14-1 Tsuruyacho, Kanagawa-ku,
Yokohama, Kanagawa, 211-0835, Japan

Email: dgs155102@iisec.ac.jp

Atsuhiro Goto
Institute of Information Security (IISEC)

2-14-1 Tsuruyacho, Kanagawa-ku,
Yokohama, Kanagawa, 211-0835, Japan

Email: goto@iisec.ac.jp

Abstract—Currently, increasing Internet use is plagued by
malicious activity; drive-by download attacks have become a
particularly serious problem. To counter these malicious sites,
blacklisting is widely used as a multilayer defense mechanism in
modern Internet security techniques. Blacklisting on network side
is especially effective for protecting critical embedded systems or
Internet of thing devices because it is not necessary to change
the configuration or to use system resources for protection. To
make an accurate blacklist, it is necessary to check malicious
candidate Uniform Resource Locators (URLs), for example, using
client honeypots. Because there are numerous malicious candi-
date URLs and limited crawling resources, efficient crawling is
necessary. In this paper, we propose SEEDSTRAINER, an approach
that improves the efficiency of crawling. SEEDSTRAINER creates
high-hit-ratio malicious candidate URL lists using open feeds,
open intelligence, and machine learning. With SEEDSTRAINER,
the hit ratio was improved by 12.5 times. In addition, we reveal
the type of information distributed and the update statuses of
various open feeds.

I. INTRODUCTION

Internet usage is becoming increasingly plagued by ma-
licious activity, and drive-by downloads have become an
especially serious problem. Grier et al. described the exploit-
as-a-service model, a malware distribution ecosystem based on
drive-by download attacks [1]. In this model, attackers pay for
an exploit kit or service to “do the dirty work” of exploiting a
victim’s browser. For attackers, this is easier than building their
own malware distribution network. According to an Internet
security threat report from Symantec [2], the number of new
unique malicious web domains has decreased, in response to
the exploit-as-a-service model. It is more difficult to identify
these malicious infrastructures and shut them down. A typical
drive-by download attack consists of a landing site, an exploit
site, and a malware download site. The landing site is often
set up on a legitimate site, and it redirects the victim to the
exploit site. On the exploit site, attack codes are downloaded
and executed; then, malware is downloaded from the malware
download site and executed. In this way, victims’ computers
become infected.

To counter these malicious sites, blacklisting is widely used
as a multilayer defense mechanism in modern Internet security
techniques. Blacklisting on the network side is especially
effective for protecting critical embedded systems or Internet
of things (IoT) devices because it is not necessary to change

the configuration or to use system resources. For example,
Microsoft provides the SmartScreen Uniform Resource Lo-
cator (URL) Filter [3] to protect users from the sites that
are reported to host phishing attacks or distribute malicious
software. Google Safe Browsing [4] is installed by default in
popular web browsers such as Firefox, Safari, and Chrome.
The above products or services are based on blacklisting
technology. In general, to make an accurate blacklist, it is
necessary to check malicious candidate URLs, for example,
using client honeypots. Google Safe Browsing blacklists mali-
cious candidate URLs after checking them using a crawler[5].
Because there are numerous malicious candidate URLs and
limited crawling resources, efficient crawling is essential[6].
An additional problem, because we are not Microsoft or
Google, is where to collect candidate URLs. In this paper,
we propose an approach that improves efficiency of crawling.
We create high-hit-ratio malicious candidate URL lists using
open feeds, open intelligence, and machine learning. Because
our approach is based on open available information, anybody
can test it. Our contributions are summarized as follows:

• We developed an approach to improve the hit ratio of
malicious candidate URLs. The hit ratio was improved
by 12.5 times.

• We observed various open feeds and reveal the types of
information they distribute and their update statuses.

II. RELATED WORK

There are two fields of study to counter malicious URLs.
One is the detection procedure, which decides whether a
given webpage is malicious, and the other is the finding
procedure, which efficiently finds malicious candidate URLs
on the Internet.

In the detection field, various client honeypots have been
proposed. Client honeypots are divided into two categories,
high-interaction honeypots and low-interaction honeypots.
High-interaction client honeypots use real browsers to access
a malicious site and analyze the file downloads and execu-
tions [7], [8]. Low-interaction client honeypots use browser
emulators [9]. In this experiment, we use a low-interaction
client honeypot as our detection method.

In finding field, Stokes proposed WebCop to discover mali-
cious entry of URLs related to malware distribution by tracing

31 / 35

links or linked links of malware distribution URLs [10].
Akiyama proposed a method to efficiently discover an un-
known malicious URL by inspecting the structural neigh-
borhood of known malicious URLs [11]. Zhang proposed
PoisonAmplifier, a method of discovering unknown malicious
URLs that conducts search engine optimization (SEO) by
extracting a character string unique to the SEO and performing
a keyword search on a known malicious URL performing that
SEO [12]. Invernizzi proposed EvilSeed to discover unknown
malicious URLs using hyperlink, URL structure, SEO, domain
registration information, and Domain Name System (DNS)
query information [13]. Ma proposed a method to classify
unknown URLs as benign or malicious binary using super-
vised machine learning [14]. Our study is different from these
related studies because we focus on improving the hit ratio of
malicious candidate URLs.

III. SYSTEM OVERVIEW

To improve the hit ratio of malicious candidate URLs,
we use open feeds, open intelligence, and machine learning.
Figure 1 shows the overview of our system. First, we collect
the latest malicious URLs/domains from various open feeds.
Second, we expand the latest malicious URLs by querying
malicious domains with open intelligence. Finally, we select
the truly malicious candidate URLs using machine learning.
In general, malicious candidate URLs are called seeds.

Fig. 1. Overview of SEEDSTRAINER

A. Open feeds and open intelligence

To collect malicious candidate domains/URLs, we use pub-
licly available feeds. Open feeds publish malicious URLs
on their webpages. Some open feeds manually check URLs,
whereas others automatically check the URLs. For example,
urlQuery[21] is an automatic service that receives URLs
submitted by contributors and publishes the results of visiting
those URLs on their Web site. MDL [22] volunteers manually
check URLs, and MDL provides a public forum for analysts.
The Information provided (e.g., IP address lists, domain lists,
and URL lists) and the update frequency vary depending on the
open feeds; therefore, we periodically scanned the webpages
of the open feeds.

To expand the malicious candidate domains/URLs, we used
a publicly available open threat intelligence service. Such
services accumulate information on threats and provide search
functions. However at least in free we can not obtain all
information which each open intelligence has, in general. It
is necessary to use search key such as malicious candidate
IP address or domain name. Therefore we use IP address or

domain name which we obtained from open feed as search
key. We chose to use VirusTotal [25] because it has more
information available than other services and they provide
an application programming interface (API) function for free.
These information is called Open-Source Intelligence (OSINT)
in general. However we want to show a different characteristic
of open feed and open intelligence, therefore we defined each.
Note that since bogus information may be included in OSINT,
it is necessary to determine truly malicious or not by a method
as shown in Fig 5, before finally using as a blacklist.

Figure 2 shows the detailed data flow of SEEDSTRAINER.
To collect the latest malicious domains, we crawled each
open feed every few hours. We made a daily unique do-
main list for three consecutive days (Dom 20170603) and
extracted only the new domain list (Domseed 20170605) by
taking a difference of the previous days (Dom 20170604 and
Dom 20170605). Next, we obtained each domain report using
VirusTotal API and extracted the latest URLs from each report.

Fig. 2. Detailed data flow of SEEDSTRAINER

B. Machine learning

In Figure 2 we determine malicious URLs with a high
hit ratio (SeedStrainer seed 20170605) from the extracted
list (Dom Intel seed 20170605) using machine learning. In
this experiment we use the Random Forest algorithm for the
machine learning because it is high classification performance,
excellent scalability, easy to use. Random Forest is one of
ensemble learning method where classifiers are composed by
collecting multiple classifiers [15]. Table I shows the list of
features that we use. We divided the URLs into their domain,
path, and query. Next, we calculated their length, entropy, and
n-gram (n=2).

TABLE I
FEATURES

Features
Domain Length Path Length Query Length
Domain Entropy Path Entropy Query Entropy
Domain n-gram Path n-gram Query n-gram

IV. EVALUATION

A. Investigation result for the open feeds

To determine which feed was best for SEEDSTRAINER, first
we observed each feed. Table II shows the information type

32 / 35

and the number of information items for each feeds. The obser-
vation period was 2 months from February 1, 2017, to March
31, 2017. In Table II, All indicates the daily average of the
total number of items of information we could gather. Latest
indicates the daily average of the number of latest information
items. Note that we use same method in Figure 2 to obtain the
latest URLs. Cruzit and urlQuery provide larger amounts of
information than other feeds. However, the Latest number of
Cruzit is low. Figure 3 shows the time series variation of the
total number of URLs for the 2 months, demonstrating that the
total number of URLs for each feed monotonically increases.
Figure 4 shows the time series variation of the number of latest
URLs for the 2 months. Overall, the numbers of all and latest
information items for urlQuery are larger than those of the
other feeds. Table III shows the other feed information from
May 1, 2017, to June 30, 2017. From this result, we selected
Vxvault, Dshiled, urlQuery, Ponmocup, and Alienvault.

TABLE II
FEED INFORMATION

Feed name Info. type All Latest
SSLBL[16] IPaddress 300.2 3.41
Cruzit[17] IPaddress 6589.9 4.42

Vxvault[18] URL 601.2 3.03
Dshiled[19] domain 237.8 2.34
Macl0de[20] URL 458.1 0.017
urlQuery[21] URL 69443 687

Fig. 3. The number of All information items for each feed

TABLE III
OTHER FEED INFORMATION

Feed name Info. type All Latest
MDL[22] URL 1789.4 0.033

Ponmocup[23] URL 779.4 6.79
Alienvault[24] URL 3931 12.05

B. Environment

Figure 5 shows the environment we used to evaluate the
hit ratio of the malicious candidate URLs. We use two com-
ponents, a client honeypot and an antivirus software package.

Fig. 4. The number of Latest information items for each feed

We used thug [9] as a client honeypot to crawl the seed list
of malicious candidate URLs. Thug is a client honeypot that
emulates a real web browser, fetches and executes any internal
or external JavaScript, follows all redirects, downloads files
just like any browser would, and collects the results. We used
four antivirus software packages, Trend Micro [26], Syman-
tec [27], McAfee [28], and Kaspersky [29]. In this experiment,
if at least one antivirus software package identified the file
as malicious, the source URL was set to malicious. These
four antivirus applications were selected because they hold
the top market shares in Japan. Some antivirus applications
return false-negatives; however, the antivirus applications that
hold top market share return fewer false-positives than less
popular applications. Note that the signatures of the antivirus
applications were always updated to the latest version.

Fig. 5. Evaluation environment

C. Result

We define the hit ratio as the percentage of truly malicious
URLs to the number of the original seed list. In Figure 5,
the hit ratio is the percentage of the seed list to the result.
Formally, we define the hit ratio as follows:

Hit ratio = Precision =
TruePositive

TruePositive+ FalsePositive

Note that, in general, since hit rate is called as recall, we
denote the hit ratio as precision to avoid any misunderstanding.

33 / 35

First, we calculated the hit ratio of the original open feed.
Because urlQuery provides more information than the other
seeds according to Section IV-A, we calculated the average hit
ratio of urlQuery for April 2017, a period of 1 month. Next,
we calculated the hit ratio of the prior stage of the machine
learning process (the hit ratio of Dom Intel seed 20170605 in
Figure 2). Table IV shows these values. Note that the hit URL
and the input URL indicate the number of each type of URL.
Furthermore we show standard deviation (SD) of urlQuery and
Prior ML for April 2017, a period of 1 month.

TABLE IV
HIT RATIO

Seed name hit URLs input URLs hit ratio SD of hit ratio
urlQuery 1,040 20,340 0.0511 0.0149
Prior ML 517 6,731 0.0768 0.0547

Finally, we calculated the hit ratio of SEEDSTRAINER (the
hit ratio of SeedStrainer seed 20170605 in Figure 2). Table V
shows the number of URLs and the observation period. Dataset
SS is the SEEDSTRAINER seed. For comparison, we prepared
Dataset SS UQ, which was made only with urlQuery seed
and machine learning. These datasets contain malicious or
benign labels according to the evaluation environment (Fig-
ure 5). Note that, because we had to consider our evaluation
environment performance, we restricted the number of URLs
acquired from open intelligence; therefore the number of data
in the SS dataset is smaller than that in the SS UQ dataset.

TABLE V
DATASET

Dataset Name URLs Observation period
SS 24,567 March 30, 2017 - July 25, 2017

SS UQ 83,270 March 30, 2017 - July 25, 2017

We divided each dataset into two for training and testing.
Table VI shows the details of the training and test data. We
used old data as training data and new data as test data to
predict the future from the past data. We predicted the label
of the test data using the Random Forest algorithm with the
features in Table I. Figure 6 shows the hit ratio of each feature
that we used. The hit ratio is highest when all features are
used (i.e., length, entropy, and n-gram: hit ratio = 0.637 (SS)).
Of entropy and length, length has the higher hit ratio. Of
domain, path, and query, domain has the highest hit ratio.
Overall, compared with the original hit ratio in Table IV (hit
ratio = 0.0511, urlQuery)), the hit ratio of SEEDSTRAINER
improved significantly, by 12.5 times (all features: hit ratio =
0.637 (SS) in Figure 6). Note that observation periods have a
little difference of SS and urlQuery dataset, however, standard
deviation of urlQuery (see Table IV) is very small, therefore,
we think there is no impact on the result.

TABLE VI
TRAINING AND TEST CONDITIONS

Dataset Name URLs Observation period
SS train 12,000 March 30, 2017 - April 27, 2017
SS test 12,567 April 28, 2017 - July 25, 2017

SS UQ train 41,500 March 30, 2017 - May 24, 2017
SS UQ test 41,770 May 25, 2017 - July 25, 2017

Fig. 6. Hit ratio results

V. DISCUSSION

A. Size of the dataset

Because we needed to consider our evaluation environment
performance, we restricted the number of URLs we acquired
from open intelligence sources (see Section IV-C). However,
in theory, it is possible to expand more with SEED STRAINER;
therefore, an experiment with a large dataset is desired. We
used only one open intelligence source because it was able
to expand sufficiently. If more open intelligence sources are
added, more seeds with high hit ratios could be created.

B. Evaluation indicator

In our case, because the number of candidate URLs is very
large, it is desirable to have many malicious URLs within
the selected item. Therefore, we use the hit ratio (precision)
as an evaluation indicator. According to situation evaluation
indicator should be chosen. However, we believe that this
indicator is important, at least to evaluate the efficiency of
crawling.

C. Ethical issues

We could not discern an alternative way of confirming the
statuses of the Web sites over the Internet. To reduce the
amount of unnecessary traffic in our active measurements, we
accessed each Web site once a day rather than consecutivly
scanning them over a short period. We downloaded files from
the Web sites using a benign procedure, namely by sending
an HTTP GET request. No additional intrusive traffic, such as
penetration testing and vulnerability scanning, was introduced
by our methods.

VI. CONCLUSIONS

To counter malicious sites, blacklisting is widely used as
a multilayer defense mechanism in modern Internet security

34 / 35

techniques. Blacklisting on the network side is especially
effective for protecting critical embedded systems or IoT
devices because it is not necessary to change the configuration
or to use system resources for protection. To make accurate
blacklist, it is necessary to check malicious candidate URLs,
for example, using client honeypots. Because there are numer-
ous malicious candidate URLs and limited crawling resources,
efficient crawling is necessary. In this paper, we proposed
SEEDSTRAINER, an approach that improves the efficiency
of crawling. SEEDSTRAINER creates high-hit-ratio malicious
candidate URL lists using open feeds, open intelligence, and
machine learning. The hit ratio improved by 12.5 times when
using SEEDSTRAINER. In addition, we revealed the types of
information distributed and the update statuses of various open
feeds.

REFERENCES

[1] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J.Dietrich, K.
Levchenko, P. Mavrommatis, D. McCoy,A. Nappa, A. Pitsillidis, N.
Provos, M. Z. Rafique, M. A. Rajab, C. Rossow, K. Thomas, V. Paxson, S.
Sav-age, and G. M. Voelker. Manufacturing Compromise:The Emergence
of Exploit-as-a-Service. In Proc. of the ACM Conference on Computer
and Communications Security(CCS), 2012.

[2] 2015 Internet Security Threat Report, Volume 20. https:
//www.symantec.com/content/dam/symantec/docs/security-center/
archives/istr-15-april-volume-20-en.pdf, 2017.

[3] Microsoft: SmartScreen URL Filter. https://technet.microsoft.com/en-us/
library/jj618329(v=ws.11).aspx, 2017.

[4] Google Safe Browsing. https://developers.google.com/safe-browsing/,
2017.

[5] T. Gerbet, A. Kumar, and C. Lauradoux. A Privacy Analysis of Google
and Yandex Safe Browsing. In Proc. of the 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2016.

[6] Y. Tanaka, M. Akiyama, and A. Goto. Analysis of Malware Download
Sites by Focusing on Time Series Variation of Malware. ELSEVIER,
Journal of Computational Science, 2017.

[7] C. Seifert and R. Steenson. Capture-HPC. https://projects.honeynet.org/
capture-hpc.

[8] M. Akiyama, M. Iwamura, Y. Kawakoya, K. Aoki and M. Itoh. Design
and Implementation of High Interaction Client Honeypot for Drive-by-
Download Attacks. IEICE TRANS. COMMUN., 2010.

[9] A. dellaera. Low-interaction honeyclient Thug. https://www.honeynet.org/
node/827.

[10] J. Stokes, R. Andersen, C. Seifert, and K. Chellapilla. WebCop: Locating
Neighborhoods of Malware on the Web. In Proc. of USENIX Workshop
on Large-Scale Exploits and Emergent Threats, 2010.

[11] M. Akiyama, T. Yagi, and M. Itoh. Searching Structural Neighborhood
of Malicious URLs to Improve Blacklisting. In Proc. of Applications and
the Internet (SAINT), 2011.

[12] J. Zhang, C. Yang, Z. Xu, and G. Gu. PoisonAmplifier: A Guided
Approach of Discovering Compromised Websites through Reversing
Search Poisoning Attacks. In Proc. of Research in Attacks, Intrusions,
and Defense (RAID), 2012.

[13] L. Invernizzi, S. Benvenuti, M. Cova, P. M. Comparetti, C. Kruegel,
and G. Vigna. EvilSeed: A Guided Approach to Finding Malicious Web
Pages. In Proc. of the 2012 IEEE Symposium on Security and Privacy,
2012.

[14] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Beyond Blacklists:
Learning to Detect Malicious Web Sites from Suspicious URLs. In
Proc. of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2009.

[15] L. Breiman. Random Forests. Journal of Machine Learning. 2001.
[16] SSL blacklist. https://sslbl.abuse.ch/blacklist/, 2017.
[17] Cruzit. http://www.cruzit.com/, 2017.
[18] Vxvault. http://vxvault.net/ViriList.php, 2017.
[19] Dshiled. https://www.dshield.org/, 2017.
[20] Malc0de. http://malc0de.com/database/?&page=1, 2017.
[21] urlQuery. https://urlquery.net/, 2017.

[22] MDL : malwaredomainlist. https://www.malwaredomainlist.com/, 2017.
[23] Ponmocup. http://security-research.dyndns.org/pub/malware-feeds/

ponmocup-infected-domains-CIF-latest.txt, 2017.
[24] Alienvault. https://www.alienvault.com/, 2017.
[25] VirusTotal. https://www.virustotal.com, 2017.
[26] Trend Micro ServerProtect for linux. http://www.trendmicro.co.jp/jp/

business/products/splx/, 2017.
[27] Symantec Endpoint Protection. https://www.symantec.com/ja/jp/theme.

jsp?themeid=endpointsecurity lineup sep, 2017.
[28] McAfee Endpoint Protection Suite. https://www.mcafee.com/jp/

products/endpoint-protection-suite.aspx, 2017.
[29] Kaspersky Security. http://home.kaspersky.co.jp/store/kasperjp/ja JP/pd/

ThemeID.37143200/productID.5064647600, 2017.

35 / 35

	Introduction
	The Safety-Security Gap of the Cooperative-Vehicle Ecosystems
	Timeliness Threats
	Memory Isolation and Cooperative-Scheduling
	Resource Bound Analysis
	Caches
	Cache analysis under attack
	Memory, Busses and Pipelines

	Towards an Intrusion Tolerant Architecture
	Isolation
	Replication and Voting
	Sensor Fusion
	Simplex and Actuators
	Rejuvenation and Diversification
	Actuators

	Timeliness Challenges and Opportunities
	Acknowledgments
	Conclusions

